找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Developments in Integrable Systems and Related Topics of Mathematical Physics; Kezenoi-Am, Russia, Victor M. Buchstaber,Sotiris Kon

[復(fù)制鏈接]
31#
發(fā)表于 2025-3-26 22:33:08 | 只看該作者
32#
發(fā)表于 2025-3-27 04:36:51 | 只看該作者
33#
發(fā)表于 2025-3-27 06:37:46 | 只看該作者
,Movable Poles of Painlevé I Transcendents and Singularities of Monodromy Data Manifolds,to the singular submanifold. Such solutions coincide with the class of “truncated” solutions (intégrales tronquée) by classification of P. Boutroux. We derive further classification based on decomposition of singularities of monodromy data manifold.
34#
發(fā)表于 2025-3-27 09:54:36 | 只看該作者
35#
發(fā)表于 2025-3-27 14:24:14 | 只看該作者
36#
發(fā)表于 2025-3-27 19:02:06 | 只看該作者
37#
發(fā)表于 2025-3-27 22:18:48 | 只看該作者
Numerical Instability of the Akhmediev Breather and a Finite-Gap Model of It,ves in weakly nonlinear media, considered the main physical mechanism for the appearance of rogue (anomalous) waves (RWs) in Nature. In this paper we study the numerical instabilities of the Akhmediev breather, the simplest space periodic, one-mode perturbation of the unstable background, limiting o
38#
發(fā)表于 2025-3-28 02:35:15 | 只看該作者
,Movable Poles of Painlevé I Transcendents and Singularities of Monodromy Data Manifolds,nd between singularities of two-dimensional monodromy data manifold and analytic properties of solutions parametrized by this manifold. It is proved that solutions of Painlevé ?I equation have no poles at infinity at a given critical sector of the complex plane iff the related monodromy data belong
39#
發(fā)表于 2025-3-28 08:14:36 | 只看該作者
40#
發(fā)表于 2025-3-28 12:15:17 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 17:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鞍山市| 莒南县| 衡水市| 祁门县| 丰台区| 诏安县| 铁力市| 延吉市| 文成县| 奈曼旗| 新平| 天水市| 衡水市| 汕尾市| 宣城市| 玉龙| 光泽县| 日土县| 缙云县| 镇坪县| 滨海县| 兰州市| 桦甸市| 修文县| 松溪县| 曲阜市| 通海县| 崇明县| 崇阳县| 甘德县| 镇赉县| 绥芬河市| 天津市| 尤溪县| 松江区| 江西省| 芜湖县| 威海市| 迭部县| 乡宁县| 新民市|