找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Developments in Fractals and Related Fields; Conference on Fracta Julien Barral,Stéphane Seuret Conference proceedings 2017 Springer

[復制鏈接]
樓主: Strategy
51#
發(fā)表于 2025-3-30 12:04:51 | 只看該作者
Some Problems on the Boundary of Fractal Geometry and Additive Combinatorics,wth of entropy of convolutions. We explain the main result on ., and derive, via a linearization argument, an analogous result for the action of the affine group on .. We also develop versions of the results for entropy dimension and Hausdorff dimension. The method is applied to two problems on the
52#
發(fā)表于 2025-3-30 12:46:20 | 只看該作者
53#
發(fā)表于 2025-3-30 18:07:59 | 只看該作者
54#
發(fā)表于 2025-3-30 22:29:56 | 只看該作者
55#
發(fā)表于 2025-3-31 01:41:45 | 只看該作者
A Survey on the Dimension Theory in Dynamical Diophantine Approximation,cuses on the size of dynamically defined limsup sets in the sense of measure and dimension. This quantitative study is motivated by the qualitative nature?of the density of the orbits and the connections with the classic Diophantine approximation. In this survey, we collect some recent progress on t
56#
發(fā)表于 2025-3-31 07:27:11 | 只看該作者
57#
發(fā)表于 2025-3-31 09:49:10 | 只看該作者
Multifractal Properties of Convex Hulls of Typical Continuous Functions,a dense .. subset . such that for . the following properties are satisfied. For . = 1,?2 the functions .. and . coincide only on a set of zero Hausdorff dimension, the functions .. are continuously differentiable on (0,?1)., . equals the boundary of [0,?1]., ., . and . if . ∈ (0,?+.).{1}.
58#
發(fā)表于 2025-3-31 14:50:31 | 只看該作者
Small Union with Large Set of Centers,ton (0 ≤ . < .) of an .-dimensional cube centered at the origin or the .-skeleton of a more general polytope of .. We also study the case when we allow not only scaled copies but also scaled and rotated copies and also the case when we allow only rotated copies.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 06:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
炉霍县| 右玉县| 淮北市| 阳东县| 礼泉县| 依兰县| 阿鲁科尔沁旗| 宁强县| 阳江市| 科技| 沙坪坝区| 牡丹江市| 丽江市| 江达县| 怀仁县| 保定市| 合川市| 永州市| 西充县| 滦平县| 芷江| 广德县| 肇庆市| 万山特区| 和田市| 长丰县| 彭泽县| 夏津县| 修文县| 禄劝| 新巴尔虎左旗| 仲巴县| 常宁市| 沙洋县| 革吉县| 罗源县| 珠海市| 桐柏县| 华安县| 富锦市| 六盘水市|