找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: Recent Developments in Fractals and Related Fields; Conference on Fracta Julien Barral,Stéphane Seuret Conference proceedings 2017 Springer

[復(fù)制鏈接]
樓主: Strategy
51#
發(fā)表于 2025-3-30 12:04:51 | 只看該作者
Some Problems on the Boundary of Fractal Geometry and Additive Combinatorics,wth of entropy of convolutions. We explain the main result on ., and derive, via a linearization argument, an analogous result for the action of the affine group on .. We also develop versions of the results for entropy dimension and Hausdorff dimension. The method is applied to two problems on the
52#
發(fā)表于 2025-3-30 12:46:20 | 只看該作者
53#
發(fā)表于 2025-3-30 18:07:59 | 只看該作者
54#
發(fā)表于 2025-3-30 22:29:56 | 只看該作者
55#
發(fā)表于 2025-3-31 01:41:45 | 只看該作者
A Survey on the Dimension Theory in Dynamical Diophantine Approximation,cuses on the size of dynamically defined limsup sets in the sense of measure and dimension. This quantitative study is motivated by the qualitative nature?of the density of the orbits and the connections with the classic Diophantine approximation. In this survey, we collect some recent progress on t
56#
發(fā)表于 2025-3-31 07:27:11 | 只看該作者
57#
發(fā)表于 2025-3-31 09:49:10 | 只看該作者
Multifractal Properties of Convex Hulls of Typical Continuous Functions,a dense .. subset . such that for . the following properties are satisfied. For . = 1,?2 the functions .. and . coincide only on a set of zero Hausdorff dimension, the functions .. are continuously differentiable on (0,?1)., . equals the boundary of [0,?1]., ., . and . if . ∈ (0,?+.).{1}.
58#
發(fā)表于 2025-3-31 14:50:31 | 只看該作者
Small Union with Large Set of Centers,ton (0 ≤ . < .) of an .-dimensional cube centered at the origin or the .-skeleton of a more general polytope of .. We also study the case when we allow not only scaled copies but also scaled and rotated copies and also the case when we allow only rotated copies.
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 13:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
凉山| 望江县| 太保市| 进贤县| 迁安市| 禹州市| 静宁县| 岐山县| 丁青县| 瑞安市| 汪清县| 靖边县| 阿克陶县| 县级市| 南江县| 凌海市| 永寿县| 栾川县| 南汇区| 天峻县| 山丹县| 淄博市| 尉犁县| 互助| 磐石市| 微山县| 九寨沟县| 建德市| 内乡县| 台中县| 班玛县| 延庆县| 静安区| 抚远县| 靖江市| 邹城市| 长沙县| 大足县| 尼玛县| 凤冈县| 五大连池市|