找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Developments in Fixed-Point Theory; Theoretical Foundati Mudasir Younis,Lili Chen,Deepak Singh Book 2024 The Editor(s) (if applicabl

[復(fù)制鏈接]
樓主: Chylomicron
51#
發(fā)表于 2025-3-30 11:11:45 | 只看該作者
52#
發(fā)表于 2025-3-30 14:41:41 | 只看該作者
53#
發(fā)表于 2025-3-30 19:42:07 | 只看該作者
,Some Fixed Point Theorems of?Generalized Contractions with?Application to?Boundary Value Problem,iate our main results, we present relevant examples and discuss their implications. Additionally, we leverage our findings to prove the existence theorem for common solutions of integral equations. Through this study, we contribute to the understanding of these fundamental concepts and provide valuable insights into their applications.
54#
發(fā)表于 2025-3-30 20:41:59 | 只看該作者
On ,-Solutions for ,-Product of Fractional Integral Operators, need to be Banach algebras). We analyze three different existence theorems related to the generating .-functions realize ., or .-conditions on the product of different .-Orlicz spaces. An adequate measure of noncompactness (MNC) and fixed point hypothesis (FPT) are our main tools to attain the outcomes.
55#
發(fā)表于 2025-3-31 03:37:10 | 只看該作者
,Fixed Point Results in?Graphical Convex Extended ,-metric Spaces,ine the existence of strong fixed point theorems. Combining the convex structure of metric spaces with graphs makes the manuscript novel and interesting to academics interested in discovering fixed points inside the graph structure.
56#
發(fā)表于 2025-3-31 06:12:53 | 只看該作者
,Existence and?Computational Approximation of?Fixed Points of?Generalized Multivalued Mappings in?Babrid iterative scheme. Through numerical and graphical analysis, we demonstrate that the Picard–Thakur hybrid iterative scheme converges at a faster rate compared to other schemes. Additionally, we provide an application that establishes a connection between our results and real-world phenomena.
57#
發(fā)表于 2025-3-31 10:46:35 | 只看該作者
,Fixed Point Theory for Multi-valued Feng–Liu Operators in Vector-Valued Metric Spaces, the sense of Perov. Existence, localization, data dependence and different kinds of stability properties of a fixed point inclusion with a generalized multi-valued Feng–Liu operator are presented. An extension to the so-called multi-valued contractions of the Feng–Liu–Subrahmanyan type is also considered. Some applications are suggested.
58#
發(fā)表于 2025-3-31 13:51:18 | 只看該作者
,Fixed Points of?Coset and?Orbit Space Actions: An Application of?Semihypergroup Theory,vex spaces, as well as on certain Banach spaces. In particular, we use some recent developments in abstract harmonic analysis regarding the theory of Semihypergroups to provide an overview of several characterizations for the existence of common fixed points of such actions in terms of amenability of the underlying spaces.
59#
發(fā)表于 2025-3-31 21:15:24 | 只看該作者
,A Study of?Fixed Point Results in?G-Metric Space via?New Contractions with?Applications,he existing ones. Thereafter, a few special cases which scale down our results to some prominent ones in the literature are highlighted and analyzed. As an application, our main result is used to construct new existence criteria for the solution of a boundary value problem.
60#
發(fā)表于 2025-3-31 22:54:43 | 只看該作者
,Revisiting Darbo’s Fixed Point Theory with?Application to?a?Class of?Fractional Integral Equations,mutative property, and then generalize Darbo’s fixed point theory. Thereafter, by utilizing Darbo’s fixed point theorem, we demonstrate the existence of a solution to the generalized proportional .-fractional integral equation. At the end, a suitable example is constructed, which verifies the obtained results.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 07:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
凯里市| 石景山区| 云南省| 乌拉特中旗| 白河县| 新蔡县| 宜君县| 邢台县| 行唐县| 富川| 彭水| 绥宁县| 平阴县| 象山县| 景谷| 庄浪县| 马关县| 平江县| 峨边| 绩溪县| 乐都县| 磐石市| 茶陵县| 金坛市| 八宿县| 调兵山市| 阿图什市| 安远县| 台中市| 阳曲县| 松原市| 巢湖市| 阿合奇县| 西城区| 金坛市| 孙吴县| 霞浦县| 砀山县| 武邑县| 高雄市| 巴塘县|