找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equati; 2012 John H Barrett Xiaobing Feng,Oh

[復(fù)制鏈接]
樓主: Grant
11#
發(fā)表于 2025-3-23 11:23:17 | 只看該作者
12#
發(fā)表于 2025-3-23 15:17:52 | 只看該作者
,Discontinuous Finite Element Methods for Coupled Surface–Subsurface Flow and Transport Problems,terized by the Navier–Stokes (or Stokes) equations coupled by Darcy equations. In the subsurface, the diffusion coefficient of the transport equation depends on the velocity field in a nonlinear manner. The interior penalty discontinuous Galerkin method is used for the spatial discretization, and th
13#
發(fā)表于 2025-3-23 21:19:39 | 只看該作者
0940-6573 survey papers on different aspects of discontinuous GalerkinThe field of discontinuous Galerkin finite element methods has attracted considerable recent attention from scholars in the applied sciences and engineering. This volume brings together scholars working in this area, each representing a par
14#
發(fā)表于 2025-3-23 23:39:40 | 只看該作者
A dG Approach to Higher Order ALE Formulations in Time,independent of the arbitrary extension chosen. Our approach is based on the validity of Reynolds’ identity for dG methods which generalize to higher order schemes the geometric conservation law (GCL) condition. Stability, a priori and a posteriori error analyses are briefly discussed and illustrated by insightful numerical experiments.
15#
發(fā)表于 2025-3-24 04:33:10 | 只看該作者
16#
發(fā)表于 2025-3-24 07:01:54 | 只看該作者
,Discontinuous Finite Element Methods for Coupled Surface–Subsurface Flow and Transport Problems,e backward Euler technique for the time integration. Convergence of the scheme is theoretically derived. Numerical examples show the robustness of the method for heterogeneous and fractured porous media.
17#
發(fā)表于 2025-3-24 14:30:13 | 只看該作者
Leszek F. Demkowicz,Jay Gopalakrishnan anyone who uses decision or evaluation models---for research or for applications---and is willing to question his practice, to have a deeper understanding of what he does..978-1-4419-4053-7978-0-387-31099-2Series ISSN 0884-8289 Series E-ISSN 2214-7934
18#
發(fā)表于 2025-3-24 18:25:19 | 只看該作者
19#
發(fā)表于 2025-3-24 21:36:48 | 只看該作者
20#
發(fā)表于 2025-3-25 00:19:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 01:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
谢通门县| 新蔡县| 乐东| 桓台县| 玛纳斯县| 淮滨县| 海宁市| 霍州市| 饶河县| 宜阳县| 雅江县| 九江市| 青铜峡市| 清丰县| 来安县| 保靖县| 黑山县| 绥阳县| 景东| 金坛市| 泰安市| 孙吴县| 阿克苏市| 宁安市| 东乡| 中山市| 辰溪县| 车致| 寿光市| 眉山市| 从江县| 凯里市| 饶平县| 页游| 芦山县| 华容县| 新营市| 津南区| 兴城市| 斗六市| 修武县|