找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Advances on Soft Computing and Data Mining; Proceedings of the F Rozaida Ghazali,Nazri Mohd Nawi,Jemal H. Abawajy Conference proceed

[復制鏈接]
樓主: morphology
31#
發(fā)表于 2025-3-27 00:36:37 | 只看該作者
32#
發(fā)表于 2025-3-27 02:23:26 | 只看該作者
A Mechanism to Support Agile Frameworks Enhancing Reliability Assessment for SCS Development: A Caseoving Software Development (PM-ISD). The proposed measurement enhances reliability assessment and decision-making during agile development processes. PM-ISD assists the Agile management team throughout the Medical Surgery Department (MSD) project phases to track the completion of tasks.
33#
發(fā)表于 2025-3-27 05:45:57 | 只看該作者
34#
發(fā)表于 2025-3-27 09:51:12 | 只看該作者
Genetic Algorithm Based Parallel K-Means Data Clustering Algorithm Using MapReduce Programming Paradustering process by 0.54?s on average and outperformed PKCA. Data analysts in marketing and finance, telecommunication and transport companies and researchers in academia can use this algorithm to make sense out of their huge volume of data.
35#
發(fā)表于 2025-3-27 14:58:29 | 只看該作者
36#
發(fā)表于 2025-3-27 18:44:10 | 只看該作者
37#
發(fā)表于 2025-3-27 23:27:36 | 只看該作者
38#
發(fā)表于 2025-3-28 02:23:17 | 只看該作者
Residual Neural Network Vs Local Binary Convolutional Neural Networks for Bilingual Handwritten Digir LBCNN is 99.38%. In addition, the proposed systems are applied to MNIST and AHDBase datasets separately. The obtained accuracies for MNIST are 99.27% and 99.51% and for AHDBase are 99.29% and 99.38%, respectively. The resulting performance of ResNet and LBCNN are the highest when they are compared against several state-of-the-art techniques.
39#
發(fā)表于 2025-3-28 07:54:17 | 只看該作者
Link Bandwidth Recommendation for Indonesian E-Health Grid. The e-Health Grid consolidates 34 hospitals, four controllers, and four switches. The result of the simulation yields a recommendation of link bandwidth that provides minimum round trip time from each node in the grid.
40#
發(fā)表于 2025-3-28 14:18:50 | 只看該作者
Experimental Analysis of Tuberculosis Classification Based on Clinical Data Using Machine Learning Tcation methods based on clinical data. The results show that most of machine learning techniques that use in this study have a good performance in classifying tuberculosis based clinical data. Those machine learning techniques have achieved 0.97–0.99 in testing F1-Score.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 16:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
林周县| 即墨市| 枣强县| 汉川市| 盐山县| 奇台县| 黔南| 潢川县| 海林市| 正镶白旗| 应城市| 宜宾县| 兴和县| 元谋县| 盐源县| 鹿泉市| 曲麻莱县| 澄城县| 竹溪县| 永德县| 南京市| 延长县| 额尔古纳市| 綦江县| 弋阳县| 阿克陶县| 新疆| 巨野县| 即墨市| 双牌县| 将乐县| 柘城县| 五峰| 惠水县| 虞城县| 原阳县| 巢湖市| 白水县| 江安县| 三都| 江口县|