找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Advances in Soft Computing and Data Mining; Proceedings of the F Rozaida Ghazali,Nazri Mohd Nawi,Nureize Arbaiy Conference proceedin

[復制鏈接]
樓主: Orthosis
51#
發(fā)表于 2025-3-30 11:19:41 | 只看該作者
52#
發(fā)表于 2025-3-30 14:37:17 | 只看該作者
2367-3370 oblem with the most efficient tools and techniques. To thrive in these data-driven ecosystems, researchers, data analysts, and practitioners must understand the design choice and options of these approaches978-3-031-00830-6978-3-031-00828-3Series ISSN 2367-3370 Series E-ISSN 2367-3389
53#
發(fā)表于 2025-3-30 19:09:40 | 只看該作者
PSS: New Parametric Based Clustering for Data Categorys, purity and rand index using benchmarks datasets. The experiment results show that the proposed approach has improved the processing times up to 92.96%. It also has better performance in term of purity and rand index and error mean of the estimation parameters.
54#
發(fā)表于 2025-3-30 23:58:04 | 只看該作者
Fuzzy-Autoregressive Integrated Moving Average (F-ARIMA) Model to Improve Temperature Forecastzzy triangles for managing fuzzy data. The proposed method for creating fuzzy numbers using standard deviations yields fewer prediction errors and increases model performance, according to the experimental results. This is because data errors have been rectified, and model development errors have be
55#
發(fā)表于 2025-3-31 03:36:07 | 只看該作者
Friendship Prediction in Social Networks Using Developed Extreme Learning Machine with Kernel Reductto the capability of achieving absolute accuracy with less number of features. Experimental results showed the superiority of ILP-PRKELM with an accomplished accuracy of 84.6 and 78.6 for Last.fm and Douban respectively, which is equivalent to 2% improved accuracy over the benchmarks.
56#
發(fā)表于 2025-3-31 07:31:27 | 只看該作者
57#
發(fā)表于 2025-3-31 11:45:23 | 只看該作者
Prediction of ADHD from a Small Dataset Using an Adaptive EEG Theta/Beta Ratio and PCA Feature Extraen subject analyses, with accuracy getting worse with the increase of EEG segments. The contribution of this work is two-fold: the practical application allows for a reliable adoption of machine learning in non-invasive EEG screening of small ADHD dataset, while the theoretical contribution extends
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-6 01:23
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
天长市| 嘉荫县| 根河市| 祁阳县| 奉贤区| 陈巴尔虎旗| 拉孜县| 象山县| 武山县| 城市| 且末县| 名山县| 德安县| 芒康县| 靖远县| 巴彦县| 侯马市| 香格里拉县| 齐河县| 衡阳县| 于田县| 阳新县| 娱乐| 应城市| 巫溪县| 甘南县| 扶余县| 拉萨市| 合江县| 绥中县| 鹤山市| 扬州市| 安乡县| 从江县| 闻喜县| 县级市| 江西省| 封开县| 得荣县| 封丘县| 阿拉善左旗|