找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Advances in Reinforcement Learning; Leslie Pack Kaelbling Book 1996 Springer Science+Business Media New York 1996 Performance.algor

[復(fù)制鏈接]
樓主: 喝水
21#
發(fā)表于 2025-3-25 07:19:20 | 只看該作者
Editorial,for the journal. One measure of our success is that for 1994 in the category of “Computer Science/Artificial Intelligence,” . was ranked seventh in citation impact (out of a total of 32 journals) by the Institute for Scientific Information. This reflects the many excellent papers that have been subm
22#
發(fā)表于 2025-3-25 10:40:20 | 只看該作者
Introduction, reinforcement learning into a major component of the machine learning field. Since then, the area has expanded further, accounting for a significant proportion of the papers at the annual . and attracting many new researchers.
23#
發(fā)表于 2025-3-25 14:36:54 | 只看該作者
Efficient Reinforcement Learning through Symbiotic Evolution,ough genetic algorithms to form a neural network capable of performing a task. Symbiotic evolution promotes both cooperation and specialization, which results in a fast, efficient genetic search and discourages convergence to suboptimal solutions. In the inverted pendulum problem, SANE formed effect
24#
發(fā)表于 2025-3-25 15:53:37 | 只看該作者
25#
發(fā)表于 2025-3-25 19:58:01 | 只看該作者
Feature-Based Methods for Large Scale Dynamic Programming,ve large scale stochastic control problems. In particular, we develop algorithms that employ two types of feature-based compact representations; that is, representations that involve feature extraction and a relatively simple approximation architecture. We prove the convergence of these algorithms a
26#
發(fā)表于 2025-3-26 01:28:50 | 只看該作者
On the Worst-Case Analysis of Temporal-Difference Learning Algorithms, takes place in a sequence of trials, and the goal of the learning algorithm is to estimate a discounted sum of all the reinforcements that will be received in the future. In this setting, we are able to prove general upper bounds on the performance of a slightly modified version of Sutton’s so-call
27#
發(fā)表于 2025-3-26 07:44:00 | 只看該作者
28#
發(fā)表于 2025-3-26 10:03:50 | 只看該作者
Average Reward Reinforcement Learning: Foundations, Algorithms, and Empirical Results,cal tasks than the much better studied discounted framework. A wide spectrum of average reward algorithms are described, ranging from synchronous dynamic programming methods to several (provably convergent) asynchronous algorithms from optimal control and learning automata. A general sensitive disco
29#
發(fā)表于 2025-3-26 13:46:06 | 只看該作者
30#
發(fā)表于 2025-3-26 19:56:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-2 23:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吉林市| 榆树市| 梅河口市| 蛟河市| 双峰县| 高邑县| 静海县| 奇台县| 都昌县| 通化市| 全州县| 福贡县| 武陟县| 老河口市| 永吉县| 余江县| 惠东县| 大城县| 元朗区| 城口县| 邵武市| 邢台县| 瑞金市| 丰都县| 古交市| 沐川县| 崇仁县| 忻城县| 双柏县| 鹤峰县| 八宿县| 全州县| 定远县| 普兰店市| 聊城市| 墨脱县| 清镇市| 隆子县| 繁昌县| 通辽市| 宜都市|