找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Advances in Operator Theory in Hilbert and Krein Spaces; Jussi Behrndt,Karl-Heinz F?rster,Carsten Trunk Conference proceedings 2010

[復(fù)制鏈接]
樓主: 諷刺文章
21#
發(fā)表于 2025-3-25 06:21:32 | 只看該作者
22#
發(fā)表于 2025-3-25 08:07:26 | 只看該作者
23#
發(fā)表于 2025-3-25 14:15:48 | 只看該作者
24#
發(fā)表于 2025-3-25 18:58:14 | 只看該作者
Fredholm Properties of Unbounded Operators on Interpolation Spaces,operator between compatible couples. If .. and .. are everywhere defined and bounded, then we obtain the operators usually considered in the classical interpolation theory. As an example, we study differential operators on different ..-spaces induced by the same differential expression.
25#
發(fā)表于 2025-3-25 22:18:59 | 只看該作者
26#
發(fā)表于 2025-3-26 03:43:46 | 只看該作者
27#
發(fā)表于 2025-3-26 06:24:45 | 只看該作者
Bisectors, Isometries and Connected Components in Hilbert Spaces, where .., P. denote respectively the orthogonal projections in . on . and on .. For . ε .(.) such that ker (.. + P. ? I) = {0} the . of . and . is a uniquely determined element of .(.) such that (setting .(.) = . and .. = 2.. ? .). A mapping Π of .(.) into itself is called an isometry if . This pap
28#
發(fā)表于 2025-3-26 11:47:36 | 只看該作者
29#
發(fā)表于 2025-3-26 13:52:08 | 只看該作者
30#
發(fā)表于 2025-3-26 17:23:16 | 只看該作者
Bisectors, Isometries and Connected Components in Hilbert Spaces,er may be considered as a sequel to [.]) since it relies heavily on the notion of bisector defined therein, as well as the notation and several results proved in that earlier work, in order to determine the arcwise connected components of .(.) and the properties of isometry on that space. This leads to a number of applications to linear relations.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 23:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
若尔盖县| 新平| 渭南市| 淮北市| 日喀则市| 延津县| 临海市| 耒阳市| 成都市| 崇文区| 宿迁市| 咸丰县| 高台县| 永丰县| 湖口县| 黄冈市| 玉林市| 秭归县| 依兰县| 昌黎县| 乌恰县| 元阳县| 襄城县| 射阳县| 徐汇区| 阿克陶县| 彭山县| 宝清县| 峨眉山市| 东台市| 共和县| 闽清县| 沽源县| 禄丰县| 南安市| 成都市| 绥芬河市| 白玉县| 焉耆| 西昌市| 澄城县|