找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Advances in Operator Theory in Hilbert and Krein Spaces; Jussi Behrndt,Karl-Heinz F?rster,Carsten Trunk Conference proceedings 2010

[復(fù)制鏈接]
樓主: 諷刺文章
21#
發(fā)表于 2025-3-25 06:21:32 | 只看該作者
22#
發(fā)表于 2025-3-25 08:07:26 | 只看該作者
23#
發(fā)表于 2025-3-25 14:15:48 | 只看該作者
24#
發(fā)表于 2025-3-25 18:58:14 | 只看該作者
Fredholm Properties of Unbounded Operators on Interpolation Spaces,operator between compatible couples. If .. and .. are everywhere defined and bounded, then we obtain the operators usually considered in the classical interpolation theory. As an example, we study differential operators on different ..-spaces induced by the same differential expression.
25#
發(fā)表于 2025-3-25 22:18:59 | 只看該作者
26#
發(fā)表于 2025-3-26 03:43:46 | 只看該作者
27#
發(fā)表于 2025-3-26 06:24:45 | 只看該作者
Bisectors, Isometries and Connected Components in Hilbert Spaces, where .., P. denote respectively the orthogonal projections in . on . and on .. For . ε .(.) such that ker (.. + P. ? I) = {0} the . of . and . is a uniquely determined element of .(.) such that (setting .(.) = . and .. = 2.. ? .). A mapping Π of .(.) into itself is called an isometry if . This pap
28#
發(fā)表于 2025-3-26 11:47:36 | 只看該作者
29#
發(fā)表于 2025-3-26 13:52:08 | 只看該作者
30#
發(fā)表于 2025-3-26 17:23:16 | 只看該作者
Bisectors, Isometries and Connected Components in Hilbert Spaces,er may be considered as a sequel to [.]) since it relies heavily on the notion of bisector defined therein, as well as the notation and several results proved in that earlier work, in order to determine the arcwise connected components of .(.) and the properties of isometry on that space. This leads to a number of applications to linear relations.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 23:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
柳州市| 湛江市| 天水市| 广南县| 陈巴尔虎旗| 海盐县| 宜兰县| 巴彦淖尔市| 巴中市| 大埔县| 隆尧县| 鹿泉市| 永平县| 吉林省| 岚皋县| 依兰县| 海晏县| 泗水县| 沙湾县| 榆社县| 江达县| 汉寿县| 新宾| 长兴县| 桂林市| 且末县| 青浦区| 大埔区| 磐安县| 绥棱县| 广宁县| 河池市| 青铜峡市| 望城县| 靖边县| 崇礼县| 惠安县| 会东县| 施甸县| 青铜峡市| 岳西县|