找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Advances in Operator Theory; The Israel Gohberg A A. Dijksma,M. A. Kaashoek,A. C. M. Ran Conference proceedings 2001 Birkh?user Verl

[復制鏈接]
樓主: CT951
11#
發(fā)表于 2025-3-23 10:45:47 | 只看該作者
About Scattering on the Ring, resonance case when the Fermi level in the rays coincides with one of eigenvalues of the nonperturbed Schr?dinger operator on the ring. An explicit expression is obtained for the scattering matrix in the resonance case for weakening connection . → 0 between the rays and the compact part.
12#
發(fā)表于 2025-3-23 14:57:06 | 只看該作者
13#
發(fā)表于 2025-3-23 18:19:07 | 只看該作者
14#
發(fā)表于 2025-3-23 23:12:05 | 只看該作者
Scattering of Waves by Periodic Gratings and Factorization Problems,on a Hilbert space. The solvability of such equations with radiation conditions at the infinity is based on the factorization of the operator symbol of the equation. This approach is general and allows, in particular, to solve the scattering problem of a space wave in ?..
15#
發(fā)表于 2025-3-24 05:32:27 | 只看該作者
16#
發(fā)表于 2025-3-24 06:46:11 | 只看該作者
17#
發(fā)表于 2025-3-24 13:54:47 | 只看該作者
18#
發(fā)表于 2025-3-24 17:32:47 | 只看該作者
Multithreshold Spectral Phase Transitions for a Class of Jacobi Matrices, . belongs to the absolutely continuous spectrum of .. or not, the spectrum of . + . is either pure absolutely continuous or discrete. This gives us a class of examples with multithreshold spectral phase transition phenomena.
19#
發(fā)表于 2025-3-24 22:24:52 | 只看該作者
On the Spectral Theory of Degenerate Quadratic Operator Pencils, from below and has a compact resolvent. Such pencils naturally arise in stability problems of mechanics and resistive magnetohydrodynamics. Under certain assumptions on . and . the description of the spectrum of the pencil . is given.
20#
發(fā)表于 2025-3-25 01:01:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 11:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
雅江县| 三穗县| 九江市| 乌什县| 禄丰县| 邹平县| 炉霍县| 交口县| 东至县| 磐石市| 昌吉市| 丰顺县| 仙游县| 平谷区| 贵州省| 古田县| 绿春县| 冷水江市| 商城县| 孝感市| 静安区| 水城县| 张家川| 章丘市| 花莲县| 临泉县| 江口县| 榆中县| 东阿县| 鹤山市| 栾城县| 金溪县| 城固县| 德兴市| 宜昌市| 蒙城县| 水城县| 建始县| 尉氏县| 晋宁县| 财经|