找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Advances in Mathematical Analysis; Celebrating the 70th Anna Maria Candela,Mirella Cappelletti Montano,Eli Book 2023 The Editor(s) (

[復(fù)制鏈接]
樓主: 大破壞
41#
發(fā)表于 2025-3-28 17:11:47 | 只看該作者
42#
發(fā)表于 2025-3-28 22:10:15 | 只看該作者
,A Strong Variant of Weyl’s Theorem Under Functional Calculus and Perturbations,The aim of this paper is the study of a new and strong variant (.) of the classical Weyl’s theorem, for operators defined on Banach spaces, under functional calculus. Furthermore, we give some results on the permanence of (.) theorem under commuting perturbations, as algebraic or finite-dimensional commuting perturbations.
43#
發(fā)表于 2025-3-28 23:34:33 | 只看該作者
44#
發(fā)表于 2025-3-29 03:08:30 | 只看該作者
45#
發(fā)表于 2025-3-29 11:16:19 | 只看該作者
A Degenerate Operator in Non Divergence Form,In this paper we consider a fourth order operator in non divergence form .?:=?., where . is a function that degenerates somewhere in the interval. We prove that the operator generates an analytic semigroup, under suitable assumptions on the function .. We extend these results to a general operator .?:=?..
46#
發(fā)表于 2025-3-29 11:35:03 | 只看該作者
47#
發(fā)表于 2025-3-29 17:22:36 | 只看該作者
48#
發(fā)表于 2025-3-29 21:06:34 | 只看該作者
On Oscillatory Behavior of Third Order Half-Linear Difference Equations,This paper deals with the oscillatory behavior of third order half-linear difference equations. We present new oscillation criteria, which improve, extend and simplify existing ones in the literature. The results are illustrated by some examples.
49#
發(fā)表于 2025-3-30 01:20:57 | 只看該作者
Anna Maria Candela,Mirella Cappelletti Montano,EliCovers some of the most innovative topics in Mathematical Analysis.Includes papers by respected researchers in the field of Mathematical Analysis.Promotes the interchange of ideas among researches in
50#
發(fā)表于 2025-3-30 07:01:00 | 只看該作者
978-3-031-20023-6The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 22:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临泽县| 泗阳县| 治县。| 微山县| 南开区| 宾阳县| 织金县| 沿河| 常山县| 宁晋县| 夏津县| 砚山县| 鹿邑县| 梓潼县| 神池县| 昭觉县| 贡嘎县| 寿阳县| 舞阳县| 岗巴县| 中西区| 澄城县| 宁晋县| 肇源县| 永顺县| 墨脱县| 金秀| 昆山市| 辰溪县| 黄龙县| 台南市| 敦化市| 井冈山市| 通城县| 灌阳县| 望谟县| 高密市| 锦州市| 阿尔山市| 黄平县| 上思县|