找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Advances in Harmonic Analysis and Applications; In Honor of Konstant Dmitriy Bilyk,Laura De Carli,Brett D. Wick Conference proceedin

[復(fù)制鏈接]
樓主: 到凝乳
41#
發(fā)表于 2025-3-28 18:26:39 | 只看該作者
A Survey of Multidimensional Generalizations of Cantor’s Uniqueness Theorem for Trigonometric Seriesmension ., .≥2, we begin by assuming that for each . in [0,2π)., ∑....=0 where . and .. It is quite natural to group together all terms whose indices differ only by signs. But here there are still several different natural interpretations of the infinite multiple sum, and, correspondingly, several d
42#
發(fā)表于 2025-3-28 22:01:25 | 只看該作者
43#
發(fā)表于 2025-3-29 01:39:29 | 只看該作者
Multiparameter Projection Theorems with Applications to Sums-Products and Finite Point Configuration, where . is a subset of the real line of a given Hausdorff dimension, . and . ?.={ . ?. :.,.∈.}. We also use projection results and inductive arguments to show that if a Hausdorff dimension of a subset of .. is sufficiently large, then the .-dimensional Lebesgue measure of the set of .-simplexes de
44#
發(fā)表于 2025-3-29 03:14:04 | 只看該作者
Riesz Potentials, Bessel Potentials, and Fractional Derivatives on Besov-Lipschitz Spaces for the Gan detail in Gatto and Urbina (On Gaussian Lipschitz Spaces and the Boundedness of Fractional Integrals and Fractional Derivatives on them, 2009. Preprint. arXiv:0911.3962v2). In this chapter we will study the boundedness of those operators on Gaussian Besov-Lipschitz spaces ...(γ.). Also, these resu
45#
發(fā)表于 2025-3-29 09:44:35 | 只看該作者
Maximal Operators Associated to Sets of Directions of Hausdorff and Minkowski Dimension Zerois given by . In this chapter we show that if .. is bounded on ..(?.) for 1<.≤., then . must be countable and of Hausdorff and Minkowski dimension zero. We shall see that the converse does not hold, however, by exhibiting an example of a countable set . of Hausdorff and Minkowski dimension zero for
46#
發(fā)表于 2025-3-29 14:26:50 | 只看該作者
47#
發(fā)表于 2025-3-29 17:18:05 | 只看該作者
48#
發(fā)表于 2025-3-29 23:21:33 | 只看該作者
On Fubini Type Property in Lorentz Spaces coordinate axes belong to ., and their one-dimensional ..-norms belong to . We show that for . ≠ . it does not imply that . (this complements one result by Cwikel). Conversely, we assume that ., and we show that then for . < . almost all linear sections of . belong to ., but for . < . all linear se
49#
發(fā)表于 2025-3-30 02:25:54 | 只看該作者
50#
發(fā)表于 2025-3-30 04:35:24 | 只看該作者
ary and style issues to writing research papers and for acad.This book is for university students, with at least a mid-intermediate level of English...It is designed both for self-study and also as a support for a course on academic communication. It can thus be used alongside the companion volumes:
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 12:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
青海省| 陆良县| 绍兴县| 饶阳县| 黄冈市| 徐水县| 调兵山市| 贺州市| 古交市| 荔浦县| 晋城| 诸城市| 驻马店市| 牟定县| 元朗区| 巴彦淖尔市| 阳春市| 雷波县| 玛沁县| 两当县| 定安县| 梧州市| 呼伦贝尔市| 沂南县| 衡阳县| 十堰市| 太原市| 册亨县| 赤壁市| 承德县| 察隅县| 合阳县| 马公市| 河池市| 健康| 井研县| 清丰县| 将乐县| 城固县| 个旧市| 团风县|