找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Advances in Geometric Inequalities; D. S. Mitrinovi?,J. E. Pe?ari?,V. Volenec Book 1989 Springer Science+Business Media Dordrecht 1

[復(fù)制鏈接]
樓主: 信賴
21#
發(fā)表于 2025-3-25 07:11:31 | 只看該作者
22#
發(fā)表于 2025-3-25 09:55:04 | 只看該作者
Homogeneous Symmetric Polynomial Geometric Inequalities, the form p(a, b, c) 0 or p(a, b, c) 0 where p(a, b, c) is a symmetric and homogeneous polynomial of degree n in the real variables a, b, c representing the sides of a triangle. They gave the general solution for such inequalities if n ≤ 3.
23#
發(fā)表于 2025-3-25 13:54:14 | 只看該作者
Some Other Transformations,n use these results for generating many other inequalities, i.e. using any known inequality for the sides of a triangle ., and any result from I.3, we get the inequality ., where a., b., c. are the sides of a new triangle given as in I.3.
24#
發(fā)表于 2025-3-25 18:33:14 | 只看該作者
25#
發(fā)表于 2025-3-25 22:57:07 | 只看該作者
Homogeneous Symmetric Polynomial Geometric Inequalities, the form p(a, b, c) 0 or p(a, b, c) 0 where p(a, b, c) is a symmetric and homogeneous polynomial of degree n in the real variables a, b, c representing the sides of a triangle. They gave the general solution for such inequalities if n ≤ 3.
26#
發(fā)表于 2025-3-26 00:43:15 | 只看該作者
27#
發(fā)表于 2025-3-26 07:16:07 | 只看該作者
28#
發(fā)表于 2025-3-26 10:51:23 | 只看該作者
Special Triangles,ng a. + b. + c. = 8R. is a right triangle. Starting from these well-known properties V. Devidé [1] has investigated at length the special class of triangles defined by a. + b. + c. = 6R.. O. Bottema [2] considered the general class of triangles (k-triangles) defined by a. + b. + c. = kR.. In [12] it
29#
發(fā)表于 2025-3-26 12:37:22 | 只看該作者
30#
發(fā)表于 2025-3-26 20:35:20 | 只看該作者
Some Trigonometric Inequalities, that many of these inequalities are still valid for real numbers A, B, C which satisfy the condition . where p is a natural number (which has to be odd in some cases). This also applies to the inequality of M. S. Klamkin [2] which can be specialized in many ways to obtain numerous well known inequalities.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 09:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
万安县| 伊金霍洛旗| 渭源县| 恩平市| 万山特区| 黔江区| 财经| 沽源县| 阳原县| 武定县| 临潭县| 潜山县| 黄浦区| 交城县| 苗栗市| 轮台县| 江城| 彭阳县| 汉源县| 浮梁县| 新沂市| 华安县| 广平县| 东乡族自治县| 东山县| 宝坻区| 冕宁县| 呼玛县| 河间市| 桂平市| 鸡泽县| 丹棱县| 平泉县| 洪泽县| 台前县| 长顺县| 金湖县| 庆云县| 两当县| 长治市| 丰顺县|