找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Advances in Constraints; Joint ERCIM/CologNet Barry O’Sullivan Conference proceedings 2003 Springer-Verlag Berlin Heidelberg 2003 De

[復(fù)制鏈接]
樓主: False-Negative
31#
發(fā)表于 2025-3-26 23:40:22 | 只看該作者
32#
發(fā)表于 2025-3-27 04:43:12 | 只看該作者
Towards Automated Reasoning on the Properties of Numerical Constraints,nts. Specific properties can determine the use of customized solvers, or they can be used to improve solver cooperation and propagation strategies. We propose a framework in which properties are seen as . of the underlying constraints, and relate them to the literature on abstract reasoning. We main
33#
發(fā)表于 2025-3-27 06:34:10 | 只看該作者
34#
發(fā)表于 2025-3-27 11:51:34 | 只看該作者
Computing Explanations and Implications in Preference-Based Configurators, should have. In particular, these configurators should provide explanations for the current state, implications of a future choice, and also information about the quality of future solutions, all with the aim of guiding the user in the process of making the right choices to obtain a good solution..
35#
發(fā)表于 2025-3-27 14:06:50 | 只看該作者
36#
發(fā)表于 2025-3-27 20:35:28 | 只看該作者
A Note on Redundant Rules in Rule-Based Constraint Programming,l case when no specific strategy guides the fixpoint computation, it is preferable to have a minimal set of rules. We propose a natural criterion for redundancy of a rule, and describe a test for a class of rules. Its relevance is demonstrated by applying it to several rule sets from two important a
37#
發(fā)表于 2025-3-28 01:00:59 | 只看該作者
A Study of Encodings of Constraint Satisfaction Problems with 0/1 Variables,a reformulation of the problem, other times 0/1 variables make up only a part of the problem. Frequently we have constraints that restrict the sum of the values of variables. This can be encoded as a simple summation of the variables. However, since variables can only take 0/1 values we can also use
38#
發(fā)表于 2025-3-28 05:00:53 | 只看該作者
39#
發(fā)表于 2025-3-28 07:42:14 | 只看該作者
40#
發(fā)表于 2025-3-28 13:05:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 21:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
伊宁县| 双江| 水富县| 安庆市| 黄浦区| 大丰市| 京山县| 平塘县| 佛坪县| 紫云| 广河县| 台中市| 青海省| 夏津县| 盖州市| 兰西县| 永寿县| 绥德县| 汝阳县| 唐海县| 新竹市| 丰都县| 锦州市| 高台县| 洪江市| 江西省| 图木舒克市| 湖北省| 廊坊市| 邛崃市| 阜康市| 石泉县| 彩票| 福建省| 镇雄县| 灵丘县| 衡南县| 海南省| 巫山县| 宜城市| 项城市|