找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Advances in Biological Network Analysis; Comparative Network Byung-Jun Yoon,Xiaoning Qian Book 2021 Springer Nature Switzerland AG

[復(fù)制鏈接]
樓主: 懇求
21#
發(fā)表于 2025-3-25 04:24:38 | 只看該作者
978-3-030-57175-7Springer Nature Switzerland AG 2021
22#
發(fā)表于 2025-3-25 07:35:09 | 只看該作者
23#
發(fā)表于 2025-3-25 11:40:18 | 只看該作者
atest techniques in computational network biology, especiall.This book reviews recent advances in the emerging field of?computational network biology with special emphasis on comparative network analysis and network?module detection. The chapters in this volume are contributed by leading internation
24#
發(fā)表于 2025-3-25 18:11:55 | 只看該作者
Global Alignment of PPI Networksaring different global PPI network alignment outputs. Finally, we provide a discussion of relatively less studied aspects of the problem that may suggest potential open problems in need of further research on the topic.
25#
發(fā)表于 2025-3-25 22:04:34 | 只看該作者
26#
發(fā)表于 2025-3-26 03:05:15 | 只看該作者
Integrated Network-Based Computational Analysis for Drug Developmentons of biological phenomena ranging from the molecule level to the disease level. This chapter describes the CODA-based computational models and discusses their benefits and/or limitations of each approach to achieve their aims.
27#
發(fā)表于 2025-3-26 06:28:50 | 只看該作者
Global Alignment of PPI Networksks within them. Functional orthology detection, protein function prediction or verification, detection of common orthologous pathways, and reconstruction of the evolutionary dynamics of various species are some of the notable application areas of the global PPI network alignment problem. We focus on
28#
發(fā)表于 2025-3-26 10:47:38 | 只看該作者
Effective Random Walk Models for Comparative Network Analysist it helps transferring the prior knowledge across different biological networks. Since identifying the optimal biological network alignment is practically infeasible due to the computational complexity, a number of heuristic network alignment algorithms have been proposed. Among various heuristic a
29#
發(fā)表于 2025-3-26 14:27:45 | 只看該作者
Computational Methods for Protein–Protein Interaction Network Alignment is critical to the understanding of biomechanism and evolution. Protein–protein interaction (PPI) data is important for understanding biological processes at the system level. Comparative analysis of PPI networks of various species may yield valuable information, such as conserved subnetwork motifs
30#
發(fā)表于 2025-3-26 17:16:44 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 03:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新竹县| 师宗县| 山西省| 皋兰县| 常州市| 古交市| 韶关市| 乐山市| 盘山县| 彭泽县| 武汉市| 司法| 麻城市| 无锡市| 临泉县| 肥东县| 鄯善县| 晋中市| 临安市| 高密市| 临澧县| 习水县| 台东县| 临高县| 嘉黎县| 辽宁省| 桓仁| 如皋市| 郸城县| 昌宁县| 浏阳市| 喜德县| 重庆市| 大石桥市| 邳州市| 浦县| 长武县| 方正县| 龙江县| 金乡县| 揭西县|