找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Advances in Big Data and Deep Learning; Proceedings of the I Luca Oneto,Nicolò Navarin,Davide Anguita Conference proceedings 2020 Sp

[復(fù)制鏈接]
樓主: Chylomicron
51#
發(fā)表于 2025-3-30 12:12:33 | 只看該作者
Restoration Time Prediction in Large Scale Railway Networks: Big Data and Interpretability,available exogenous data such as the weather information, and the experience of the operators. Results on real world data coming from the Italian railway network will show the effectiveness and potentiality of our proposal.
52#
發(fā)表于 2025-3-30 16:10:39 | 只看該作者
53#
發(fā)表于 2025-3-30 18:35:33 | 只看該作者
Fast Transfer Learning for Image Polarity Detection,ering that polarity predictors -in the era of social network and custom profiles- might need to be updated within a short time interval (i.e., hours or even minutes). Thus, the paper proposes a design of experiment that supports a fair comparison between predictors that rely on different architectures.
54#
發(fā)表于 2025-3-30 22:23:50 | 只看該作者
Psychiatric Disorders Classification with 3D Convolutional Neural Networks,ture..This work aims to analyze the behavior of classical machine learning techniques against 2D and novel 3D Convolutional Neural Network models. An exhaustive empirical assessment has been performed to evaluate these methods on 4 real-world neuroimaging tasks, including Schizophrenia and Bipolar Disorder classification.
55#
發(fā)表于 2025-3-31 02:18:28 | 只看該作者
56#
發(fā)表于 2025-3-31 05:11:18 | 只看該作者
Train Overtaking Prediction in Railway Networks: A Big Data Perspective,ld data coming from the Italian railway network will show that the proposed solution outperforms the fully data-driven approach and could help the operators in timely identify and schedule the best train overtaking solution.
57#
發(fā)表于 2025-3-31 10:39:45 | 只看該作者
Innovation Capability of Firms: A Big Data Approach with Patents, Deep Neural Networks (DNN), and Decision Trees (DT), are employed for this investigation. Results show that the most important patent’s features useful to predict IC refer to the specific technological areas, the backward citations, the technological domains and the family size. These findings are confirmed by all the three algorithms used.
58#
發(fā)表于 2025-3-31 16:57:41 | 只看該作者
59#
發(fā)表于 2025-3-31 21:26:45 | 只看該作者
Presumable Applications of Deep Learning for Cellular Automata Identification,ple of deep learning for classical CA is described. Some possibilities of deep learning application for identification problems for CA with memory and anticipation are proposed. The case of of deep learning for the systems with multivalued behavior had been proposed.
60#
發(fā)表于 2025-3-31 22:25:18 | 只看該作者
Cavitation Noise Spectra Prediction with Hybrid Models,for the prediction of the ship propeller cavitating vortex noise, adopting real data collected during extensive model scale tests in a cavitation tunnel. Results will show the effectiveness of the proposal.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 00:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
伊宁县| 东乡县| 潮州市| 临江市| 尤溪县| 江永县| 图片| 开化县| 武穴市| 忻州市| 长泰县| 高安市| 洪泽县| 泊头市| 繁峙县| 佛教| 乳源| 甘泉县| 仲巴县| 韶山市| 洪泽县| 武隆县| 文登市| 河曲县| 磐安县| 多伦县| 纳雍县| 通辽市| 汕头市| 岢岚县| 灵璧县| 云梦县| 龙川县| 铜梁县| 天全县| 疏附县| 芮城县| 泾川县| 兰州市| 崇阳县| 通化县|