找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Advancements in Multi-View Data Analytics; Witold Pedrycz,Shyi-Ming Chen Book 2022 The Editor(s) (if applicable) and The Author(s),

[復(fù)制鏈接]
樓主: Insularity
11#
發(fā)表于 2025-3-23 10:52:18 | 只看該作者
How Multi-view Techniques Can Help in Processing Uncertainty, can be used in processing uncertainty—where many problems can reduced to a similar task of reconstructing properties of a multi-D object from its 1-D projections. In this chapter, we provide an overview of these techniques on the examples of probabilistic, interval, and fuzzy uncertainty, and of co
12#
發(fā)表于 2025-3-23 15:12:35 | 只看該作者
Multi-view Clustering and Multi-view Models,iew data on a large scale. Multi-view data, in general, is large, heterogeneous and uncertain, but also contains a lot of knowledge to mine and apply. Some of the single-view data clustering techniques have been improved to analyze multi-view data by extending the structure of the objective function
13#
發(fā)表于 2025-3-23 20:18:16 | 只看該作者
14#
發(fā)表于 2025-3-24 00:15:05 | 只看該作者
15#
發(fā)表于 2025-3-24 03:08:27 | 只看該作者
Data Anonymization Through Multi-modular Clustering,nes by opening their data. Anonymization of data refers to the process of removing sensitive data’s identifiers while keeping their structure and also the information type [.]. A fundamental challenge with data anonymization?is achieving a balance between the data’s worth and the degree of disclosur
16#
發(fā)表于 2025-3-24 07:43:29 | 只看該作者
17#
發(fā)表于 2025-3-24 13:31:43 | 只看該作者
A Graph-Based Multi-view Clustering Approach for Continuous Pattern Mining,mponent of data streams. These models and algorithms also ought to take into account the multi-source nature of the sensor data by being able to conduct multi-view analysis. In this study, we address these challenges by introducing a novel multi-view data stream?clustering approach, entitled MST-MVS
18#
發(fā)表于 2025-3-24 17:12:15 | 只看該作者
Learning Shared and Discriminative Information from Multiview Data, dramatically. Huge amounts of data that abound with heterogeneous features representing distinct perspectives of the same underlying patterns arise in various scientific fields. For instance, LIDAR signals, radar signals, and camera videos can be seen as three different views of a particular self-d
19#
發(fā)表于 2025-3-24 22:30:43 | 只看該作者
A Supervised Ensemble Subspace Learning Model Based on Multi-view Feature Fusion Employing Multi-telti-modalities or large sets of single modality data and extracts low order comprehensive attributes that effectively represents inherent characteristics of multiple sets sensor measurement associated with given physiological phenomena. This paper presents a multi-view feature fusion?based model tha
20#
發(fā)表于 2025-3-25 01:26:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 17:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
同江市| 保山市| 云和县| 汝州市| 抚远县| 新龙县| 大同县| 孝昌县| 陆河县| 江永县| 古田县| 康保县| 黎平县| 沅江市| 凤阳县| 玛纳斯县| 兴仁县| 东明县| 霍林郭勒市| 乌拉特中旗| 中牟县| 南华县| 铜鼓县| 汉源县| 土默特右旗| 怀远县| 宕昌县| 乐安县| 桂平市| 钟山县| 宜君县| 缙云县| 龙山县| 湘乡市| 江孜县| 正镶白旗| 绥德县| 佛坪县| 灵山县| 若羌县| 斗六市|