找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Advancements in Multi-View Data Analytics; Witold Pedrycz,Shyi-Ming Chen Book 2022 The Editor(s) (if applicable) and The Author(s),

[復(fù)制鏈接]
樓主: Insularity
11#
發(fā)表于 2025-3-23 10:52:18 | 只看該作者
How Multi-view Techniques Can Help in Processing Uncertainty, can be used in processing uncertainty—where many problems can reduced to a similar task of reconstructing properties of a multi-D object from its 1-D projections. In this chapter, we provide an overview of these techniques on the examples of probabilistic, interval, and fuzzy uncertainty, and of co
12#
發(fā)表于 2025-3-23 15:12:35 | 只看該作者
Multi-view Clustering and Multi-view Models,iew data on a large scale. Multi-view data, in general, is large, heterogeneous and uncertain, but also contains a lot of knowledge to mine and apply. Some of the single-view data clustering techniques have been improved to analyze multi-view data by extending the structure of the objective function
13#
發(fā)表于 2025-3-23 20:18:16 | 只看該作者
14#
發(fā)表于 2025-3-24 00:15:05 | 只看該作者
15#
發(fā)表于 2025-3-24 03:08:27 | 只看該作者
Data Anonymization Through Multi-modular Clustering,nes by opening their data. Anonymization of data refers to the process of removing sensitive data’s identifiers while keeping their structure and also the information type [.]. A fundamental challenge with data anonymization?is achieving a balance between the data’s worth and the degree of disclosur
16#
發(fā)表于 2025-3-24 07:43:29 | 只看該作者
17#
發(fā)表于 2025-3-24 13:31:43 | 只看該作者
A Graph-Based Multi-view Clustering Approach for Continuous Pattern Mining,mponent of data streams. These models and algorithms also ought to take into account the multi-source nature of the sensor data by being able to conduct multi-view analysis. In this study, we address these challenges by introducing a novel multi-view data stream?clustering approach, entitled MST-MVS
18#
發(fā)表于 2025-3-24 17:12:15 | 只看該作者
Learning Shared and Discriminative Information from Multiview Data, dramatically. Huge amounts of data that abound with heterogeneous features representing distinct perspectives of the same underlying patterns arise in various scientific fields. For instance, LIDAR signals, radar signals, and camera videos can be seen as three different views of a particular self-d
19#
發(fā)表于 2025-3-24 22:30:43 | 只看該作者
A Supervised Ensemble Subspace Learning Model Based on Multi-view Feature Fusion Employing Multi-telti-modalities or large sets of single modality data and extracts low order comprehensive attributes that effectively represents inherent characteristics of multiple sets sensor measurement associated with given physiological phenomena. This paper presents a multi-view feature fusion?based model tha
20#
發(fā)表于 2025-3-25 01:26:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 11:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
隆安县| 喜德县| 名山县| 正定县| 池州市| 南川市| 库尔勒市| 攀枝花市| 岑巩县| 丰都县| 开平市| 凉城县| 冷水江市| 武隆县| 蒙自县| 治多县| 黄石市| 甘泉县| 崇明县| 微山县| 阿拉善盟| 海原县| 辉南县| 洪雅县| 介休市| 泗水县| 微山县| 桐庐县| 祁阳县| 阿合奇县| 巴东县| 台东县| 富锦市| 桂阳县| 广丰县| 雷山县| 祁东县| 习水县| 紫阳县| 新宁县| 湖北省|