找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Realtime Data Mining; Self-Learning Techni Alexander Paprotny,Michael Thess Book 2013 Springer International Publishing Switzerland 2013 Ma

[復制鏈接]
查看: 46181|回復: 50
樓主
發(fā)表于 2025-3-21 18:43:29 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Realtime Data Mining
副標題Self-Learning Techni
編輯Alexander Paprotny,Michael Thess
視頻videohttp://file.papertrans.cn/823/822426/822426.mp4
概述Specifically addresses recommendation engines from a mathematically rigorous viewpoint.Discusses a control-theoretic framework for recommendation engines.Provides applications to a number of areas wit
叢書名稱Applied and Numerical Harmonic Analysis
圖書封面Titlebook: Realtime Data Mining; Self-Learning Techni Alexander Paprotny,Michael Thess Book 2013 Springer International Publishing Switzerland 2013 Ma
描述.????Describing novel mathematical concepts for recommendation engines, .Realtime Data Mining: Self-Learning Techniques for Recommendation Engines.?features a sound mathematical framework unifying approaches based on control and learning theories, tensor factorization, and hierarchical methods. Furthermore, it presents promising results of numerous experiments on real-world data.??The area of realtime data mining is currently developing at an exceptionally dynamic pace, and realtime data mining systems are the counterpart of today‘s “classic” data mining systems. Whereas the latter learn from historical data and then use it to deduce necessary actions, realtime analytics systems learn and act continuously and autonomously. In the vanguard of these new analytics systems are recommendation engines. They are principally found on the Internet, where all information is available in realtime and an immediate feedback is guaranteed. .?.This?monograph appeals to computer scientists and specialists in machine learning, especially from the area of recommender systems, because it conveys a new way of realtime thinking?by considering recommendation tasks as control-theoretic problems. .Realtim
出版日期Book 2013
關(guān)鍵詞Markov decision process; collaborative filtering; hierarchical methods; real-time analysis; recommendati
版次1
doihttps://doi.org/10.1007/978-3-319-01321-3
isbn_softcover978-3-319-34445-4
isbn_ebook978-3-319-01321-3Series ISSN 2296-5009 Series E-ISSN 2296-5017
issn_series 2296-5009
copyrightSpringer International Publishing Switzerland 2013
The information of publication is updating

書目名稱Realtime Data Mining影響因子(影響力)




書目名稱Realtime Data Mining影響因子(影響力)學科排名




書目名稱Realtime Data Mining網(wǎng)絡公開度




書目名稱Realtime Data Mining網(wǎng)絡公開度學科排名




書目名稱Realtime Data Mining被引頻次




書目名稱Realtime Data Mining被引頻次學科排名




書目名稱Realtime Data Mining年度引用




書目名稱Realtime Data Mining年度引用學科排名




書目名稱Realtime Data Mining讀者反饋




書目名稱Realtime Data Mining讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:16:15 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:41:46 | 只看該作者
Decomposition in Transition: Adaptive Matrix Factorization,s on real-world data. Moreover, we address a compressive sensing-based approach to Netflix-like matrix completion problems and conclude the chapter by proposing a remedy to complexity issues in computing large elements of the low-rank matrices, which, as we shall see, is a recurring problem related to factorization-based prediction methods.
地板
發(fā)表于 2025-3-22 08:19:38 | 只看該作者
The Big Picture: Toward a Synthesis of RL and Adaptive Tensor Factorization,ucker-based approximation architecture that relies crucially on the notion of an aggregation basis described in Chap. .. As our method requires a partitioning of the set of state transition histories, we are left with the challenge of how to determine a suitable partitioning, for which we propose a genetic algorithm.
5#
發(fā)表于 2025-3-22 12:03:06 | 只看該作者
Brave New Realtime World: Introduction,ime analytics methods. We emphasize that such online learning does not conflict with conventional offline learning but, on the opposite, both complement each other. Finally, we give some methodical remarks.
6#
發(fā)表于 2025-3-22 16:32:45 | 只看該作者
7#
發(fā)表于 2025-3-22 19:13:35 | 只看該作者
8#
發(fā)表于 2025-3-23 00:29:36 | 只看該作者
9#
發(fā)表于 2025-3-23 02:52:05 | 只看該作者
Up the Down Staircase: Hierarchical Reinforcement Learning,points; we proceed to devising and justifying approaches to apply hierarchical methods to both the model-based as well as the model-free case. In regard to the latter, we set out from the multigrid reinforcement learning algorithms introduced by Ziv in [Ziv04] and extend these methods to finite-horizon problems.
10#
發(fā)表于 2025-3-23 05:36:44 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 06:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
隆昌县| 稻城县| 甘德县| 石家庄市| 太和县| 长顺县| 凌源市| 华安县| 淮阳县| 广州市| 咸宁市| 孝昌县| 金山区| 乌兰浩特市| 蒲城县| 宜良县| 泸定县| 临海市| 锦州市| 安宁市| 尚志市| 关岭| 随州市| 三原县| 遂平县| 饶阳县| 资溪县| 乌拉特前旗| 卓尼县| 信阳市| 尉犁县| 锡林郭勒盟| 北碚区| 铁岭县| 广水市| 南康市| 修文县| 平阳县| 三台县| 嘉峪关市| 天柱县|