找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Real and Complex Analysis; Volume 1 Rajnikant Sinha Textbook 2018 Springer Nature Singapore Pte Ltd. 2018 Conformal Mapping.Harmonic Functi

[復(fù)制鏈接]
查看: 35381|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:31:17 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Real and Complex Analysis
副標題Volume 1
編輯Rajnikant Sinha
視頻videohttp://file.papertrans.cn/823/822229/822229.mp4
概述Discusses major topics in real and complex analysis.Includes the essential analysis that is needed for the study of functional analysis.Presents applications of complex analysis to analytic number the
圖書封面Titlebook: Real and Complex Analysis; Volume 1 Rajnikant Sinha Textbook 2018 Springer Nature Singapore Pte Ltd. 2018 Conformal Mapping.Harmonic Functi
描述.This is the first volume of the two-volume book on real and complex analysis. This volume is an introduction to measure theory and Lebesgue measure where the Riesz representation theorem is used to construct Lebesgue measure. Intended for undergraduate students of mathematics and engineering, it covers the essential analysis that is needed for the study of functional analysis, developing the concepts rigorously with sufficient detail and with minimum prior knowledge of the fundamentals of advanced calculus required. Divided into three chapters, it discusses exponential and measurable functions, Riesz representation theorem, Borel and Lebesgue measure, -spaces, Riesz–Fischer theorem, Vitali–Caratheodory theorem, the Fubini theorem, and Fourier transforms. Further, it includes extensive exercises and their solutions with each concept. The book examines several useful theorems in the realm of real and complex analysis, most of which arethe work of great mathematicians of the 19th and 20th centuries..
出版日期Textbook 2018
關(guān)鍵詞Conformal Mapping; Harmonic Functions; Holomorphic Functions; Fourier Transforms; Lebesgue Integration
版次1
doihttps://doi.org/10.1007/978-981-13-0938-0
isbn_ebook978-981-13-0938-0
copyrightSpringer Nature Singapore Pte Ltd. 2018
The information of publication is updating

書目名稱Real and Complex Analysis影響因子(影響力)




書目名稱Real and Complex Analysis影響因子(影響力)學(xué)科排名




書目名稱Real and Complex Analysis網(wǎng)絡(luò)公開度




書目名稱Real and Complex Analysis網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Real and Complex Analysis被引頻次




書目名稱Real and Complex Analysis被引頻次學(xué)科排名




書目名稱Real and Complex Analysis年度引用




書目名稱Real and Complex Analysis年度引用學(xué)科排名




書目名稱Real and Complex Analysis讀者反饋




書目名稱Real and Complex Analysis讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:41:28 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:58:31 | 只看該作者
Rajnikant Sinhads for the potential application of enzymes in a large range of different areas. As more progress in research and application of enzymes has been made the Iack of an up-to-date overview of enzyme molecular properties has become more apparent. Therefore, we started the development of an enzyme data i
地板
發(fā)表于 2025-3-22 06:07:33 | 只看該作者
5#
發(fā)表于 2025-3-22 10:34:38 | 只看該作者
ds for the potential application of enzymes in a large range of different areas. As more progress in research and application of enzymes has been made the Iack of an up-to-date overview of enzyme molecular properties has become more apparent. Therefore, we started the development of an enzyme data i
6#
發(fā)表于 2025-3-22 14:18:16 | 只看該作者
7#
發(fā)表于 2025-3-22 19:59:43 | 只看該作者
8#
發(fā)表于 2025-3-22 21:56:06 | 只看該作者
9#
發(fā)表于 2025-3-23 04:03:23 | 只看該作者
10#
發(fā)表于 2025-3-23 07:12:23 | 只看該作者
h we intend to give a representative overview on the characteristics and variability of each enzyme the Handbock is not a com- pendium. The readerwill have to go to the primary Iiterature for more detailed information. Naturally it is not possible to cover all the numerous Iiterature references for each enzym978-3-642-47751-5978-3-642-57942-4
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 06:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
麟游县| 衡水市| 永川市| 聂拉木县| 泰安市| 霍山县| 拜泉县| 皮山县| 孝感市| 沁水县| 普兰店市| 乐安县| 龙里县| 甘肃省| 伊通| 竹北市| 比如县| 永寿县| 博罗县| 嘉祥县| 自贡市| 蒲江县| 津南区| 玛沁县| 贺州市| 浦城县| 连云港市| 时尚| 湄潭县| 定远县| 墨玉县| 义乌市| 澜沧| 青阳县| 偃师市| 永靖县| 高平市| 长岭县| 古蔺县| 崇州市| 宜良县|