找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Real Spinorial Groups; A Short Mathematical Sebastià Xambó-Descamps Book 2018 The Author(s), under exclusive licence to Springer Nature Swi

[復(fù)制鏈接]
查看: 39732|回復(fù): 37
樓主
發(fā)表于 2025-3-21 16:48:59 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Real Spinorial Groups
副標(biāo)題A Short Mathematical
編輯Sebastià Xambó-Descamps
視頻videohttp://file.papertrans.cn/823/822197/822197.mp4
概述Offers an axiomatic presentation of the geometric algebra of an orthogonal geometry.Illustrates topics with a variety of examples and applications.Relates Lipschitz spinorial groups and how they conne
叢書名稱SpringerBriefs in Mathematics
圖書封面Titlebook: Real Spinorial Groups; A Short Mathematical Sebastià Xambó-Descamps Book 2018 The Author(s), under exclusive licence to Springer Nature Swi
描述This book explores the Lipschitz spinorial groups (versor, pinor, spinor and rotor groups) of a real non-degenerate orthogonal geometry (or orthogonal geometry, for short) and how they relate to the group of isometries of that geometry..After a concise mathematical introduction, it offers an axiomatic presentation of the geometric algebra of an orthogonal geometry. Once it has established the language of geometric algebra (linear grading of the algebra; geometric, exterior and interior products; involutions), it defines the spinorial groups, demonstrates their relation to the isometry groups, and illustrates their suppleness (geometric covariance) with a variety of examples. Lastly, the book provides pointers to major applications, an extensive bibliography and an alphabetic index..Combining the characteristics of a self-contained research monograph and a state-of-the-art survey, this book is a valuable foundation reference resource on applications for both undergraduate and graduate students..
出版日期Book 2018
關(guān)鍵詞orthogonal geometry; geometric algebra; orthogonal groups; spinorial groups; geometric covariance
版次1
doihttps://doi.org/10.1007/978-3-030-00404-0
isbn_softcover978-3-030-00403-3
isbn_ebook978-3-030-00404-0Series ISSN 2191-8198 Series E-ISSN 2191-8201
issn_series 2191-8198
copyrightThe Author(s), under exclusive licence to Springer Nature Switzerland AG 2018
The information of publication is updating

書目名稱Real Spinorial Groups影響因子(影響力)




書目名稱Real Spinorial Groups影響因子(影響力)學(xué)科排名




書目名稱Real Spinorial Groups網(wǎng)絡(luò)公開(kāi)度




書目名稱Real Spinorial Groups網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Real Spinorial Groups被引頻次




書目名稱Real Spinorial Groups被引頻次學(xué)科排名




書目名稱Real Spinorial Groups年度引用




書目名稱Real Spinorial Groups年度引用學(xué)科排名




書目名稱Real Spinorial Groups讀者反饋




書目名稱Real Spinorial Groups讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:16:15 | 只看該作者
Book 2018 geometry, for short) and how they relate to the group of isometries of that geometry..After a concise mathematical introduction, it offers an axiomatic presentation of the geometric algebra of an orthogonal geometry. Once it has established the language of geometric algebra (linear grading of the a
板凳
發(fā)表于 2025-3-22 00:57:05 | 只看該作者
地板
發(fā)表于 2025-3-22 05:27:02 | 只看該作者
5#
發(fā)表于 2025-3-22 09:07:36 | 只看該作者
6#
發(fā)表于 2025-3-22 13:02:01 | 只看該作者
7#
發(fā)表于 2025-3-22 18:16:45 | 只看該作者
8#
發(fā)表于 2025-3-23 00:00:39 | 只看該作者
Sebastià Xambó-Descampsty;..3. Analysis of a broad range of issues and agents of change, such as climate change, environmental policies, rural development options, effects of an enlarging EU, international competition, and effects on developing countries..978-94-007-9051-3978-90-481-3619-3
9#
發(fā)表于 2025-3-23 03:56:01 | 只看該作者
Sebastià Xambó-Descampsty;..3. Analysis of a broad range of issues and agents of change, such as climate change, environmental policies, rural development options, effects of an enlarging EU, international competition, and effects on developing countries..978-94-007-9051-3978-90-481-3619-3
10#
發(fā)表于 2025-3-23 06:27:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 21:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
皋兰县| 金昌市| 海盐县| 漯河市| 蕲春县| 沙雅县| 苏尼特右旗| 九江市| 西充县| 白河县| 思茅市| 石林| 崇文区| 镇平县| 方城县| 海南省| 天祝| 武宁县| 泉州市| 德保县| 新疆| 新河县| 孝昌县| 南溪县| 大足县| 潍坊市| 郧西县| 藁城市| 宿松县| 黑河市| 探索| 类乌齐县| 礼泉县| 阿克| 石城县| 万州区| 屏山县| 鄄城县| 广昌县| 岗巴县| 宜丰县|