找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Real Numbers, Generalizations of the Reals, and Theories of Continua; Philip Ehrlich Book 1994 Springer Science+Business Media Dordrecht 1

[復(fù)制鏈接]
樓主: 一再
11#
發(fā)表于 2025-3-23 12:57:15 | 只看該作者
The Hyperreal Lineall draw pictures of the hyperreal line and sketch its construction as an ultrapower of the real line. In the middle part of the article, we shall survey mathematical results about the structure of the hyperreal line. Near the end, we shall discuss philosophical issues concerning the nature and sign
12#
發(fā)表于 2025-3-23 14:08:45 | 只看該作者
All Numbers Great and Smallentified each ordinal with the set of all ordinals previously created, so that, 0 = ?, 1 = {0}, … , ω = {0, 1, …}, and so on. More recently, Conway [5, 6] discovered that these two methods can be subsumed under a more general construction which leads to an ordered class of numbers embracing the real
13#
發(fā)表于 2025-3-23 19:39:09 | 只看該作者
Rational and Real Ordinal Numbers for the real axis have been constructed by Sikorski [9] and, independently, Klaua [4, 5]. Reference [9] introduced integral and rational ordinal numbers; references [4, 5] introduced integral, rational, and real ordinal numbers. The purpose of these constructions is to extend the real axis into the
14#
發(fā)表于 2025-3-24 01:17:51 | 只看該作者
15#
發(fā)表于 2025-3-24 04:47:06 | 只看該作者
Veronese’s Non-Archimedean Linear Continuums of 1896, 1897 and 1898. Tullio Levi-Civita, as Hahn says, gave an arithmetical representation of Veronese’s continuum in 1892/1893 and 1898 [5, 6]. Finally, Hahn cites Arthur Schoenflies’ article of 1906 [7].
16#
發(fā)表于 2025-3-24 07:19:17 | 只看該作者
Calculation, order and Continuityreal algebra achieved a long-standing objective which up until then had been considered as desirable but probably unattainable. I shall then identify the immediate ancestral lines whose convergence gave rise to this new approach to the continuum. Finally, I shall point out that, by providing an alge
17#
發(fā)表于 2025-3-24 13:42:52 | 只看該作者
18#
發(fā)表于 2025-3-24 17:02:48 | 只看該作者
19#
發(fā)表于 2025-3-24 19:16:36 | 只看該作者
tion, most apparent in the demands for “zero exposure”. One way to open a sustainable and acceptable path between such extreme views is the establishment and application of environmental standards understood as quantitative specifications of target values concerning the environment, referred to as e
20#
發(fā)表于 2025-3-25 03:12:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 02:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沐川县| 琼海市| 罗江县| 安福县| 赫章县| 旌德县| 建德市| 酒泉市| 循化| 萝北县| 大同县| 元氏县| 余庆县| 福州市| 荔浦县| 丰台区| 襄汾县| 绿春县| 娄烦县| 讷河市| 无为县| 堆龙德庆县| 宝丰县| 泽普县| 南昌市| 芦溪县| 洛阳市| 攀枝花市| 光山县| 德钦县| 清徐县| 永福县| 岑巩县| 温宿县| 栾城县| 无锡市| 安阳市| 栖霞市| 湖北省| 恩施市| 厦门市|