找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Real Analysis Methods for Markov Processes; Singular Integrals a Kazuaki Taira Book 2024 The Editor(s) (if applicable) and The Author(s), u

[復制鏈接]
樓主: 和善
11#
發(fā)表于 2025-3-23 10:25:59 | 只看該作者
12#
發(fā)表于 2025-3-23 16:47:42 | 只看該作者
Elements of Real Analysisillation (VMO) functions, the Calderón–Zygmund decomposition (Theorem .), the John–Nirenberg inequality (Theorem .), the Hardy–Littlewood maximal function (Theorem .), sharp functions (Theorem .) and spherical harmonics (Theorem .).
13#
發(fā)表于 2025-3-23 19:15:26 | 只看該作者
14#
發(fā)表于 2025-3-23 23:02:53 | 只看該作者
15#
發(fā)表于 2025-3-24 04:55:27 | 只看該作者
16#
發(fā)表于 2025-3-24 10:01:14 | 只看該作者
Calderón–Zygmund Kernels and Their Commutatorsorks in modern history of analysis. The first main result (Theorem .) asserts the existence of singular integral operators and?the second main result (Theorem .) concerns commutators of bounded mean oscillation functions (BMO) and singular integral operators. It should be emphasized that singular in
17#
發(fā)表于 2025-3-24 12:07:36 | 只看該作者
Calderón–Zygmund Variable Kernels and Their Commutatorsns and singular integral operators (Theorems 11.2 and 11.3), generalizing Theorems 10.2 and 10.3 in Chap. 10. The main idea of proof is to reduce the variable kernel case to the constant kernel case. This is done by expanding the kernel into a series of spherical harmonics (Theorem 4.41), each term
18#
發(fā)表于 2025-3-24 18:01:01 | 只看該作者
19#
發(fā)表于 2025-3-24 19:40:25 | 只看該作者
20#
發(fā)表于 2025-3-24 23:39:27 | 只看該作者
Calderón–Zygmund Kernels and Boundary Estimates2]). The desired global . estimate (12.3) is a consequence of the explicit boundary representation formula (14.2) for the solutions of the homogeneous Dirichlet problem and an . boundedness of some singular integral operators and boundary commutators in the boundary representation formula (14.2) (Th
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 20:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
琼海市| 准格尔旗| 沽源县| 武强县| 石家庄市| 汤原县| 陈巴尔虎旗| 博爱县| 丽江市| 神池县| 清水河县| 和平区| 朝阳区| 轮台县| 响水县| 灵石县| 阿图什市| 华池县| 三穗县| 富顺县| 奉化市| 大渡口区| 宜兰市| 崇礼县| 广宁县| 定州市| 白山市| 汝南县| 隆尧县| 滦平县| 吕梁市| 东丰县| 图们市| 金阳县| 清河县| 琼中| 田东县| 渑池县| 綦江县| 潢川县| 建宁县|