找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Real Analysis Methods for Markov Processes; Singular Integrals a Kazuaki Taira Book 2024 The Editor(s) (if applicable) and The Author(s), u

[復制鏈接]
樓主: 和善
11#
發(fā)表于 2025-3-23 10:25:59 | 只看該作者
12#
發(fā)表于 2025-3-23 16:47:42 | 只看該作者
Elements of Real Analysisillation (VMO) functions, the Calderón–Zygmund decomposition (Theorem .), the John–Nirenberg inequality (Theorem .), the Hardy–Littlewood maximal function (Theorem .), sharp functions (Theorem .) and spherical harmonics (Theorem .).
13#
發(fā)表于 2025-3-23 19:15:26 | 只看該作者
14#
發(fā)表于 2025-3-23 23:02:53 | 只看該作者
15#
發(fā)表于 2025-3-24 04:55:27 | 只看該作者
16#
發(fā)表于 2025-3-24 10:01:14 | 只看該作者
Calderón–Zygmund Kernels and Their Commutatorsorks in modern history of analysis. The first main result (Theorem .) asserts the existence of singular integral operators and?the second main result (Theorem .) concerns commutators of bounded mean oscillation functions (BMO) and singular integral operators. It should be emphasized that singular in
17#
發(fā)表于 2025-3-24 12:07:36 | 只看該作者
Calderón–Zygmund Variable Kernels and Their Commutatorsns and singular integral operators (Theorems 11.2 and 11.3), generalizing Theorems 10.2 and 10.3 in Chap. 10. The main idea of proof is to reduce the variable kernel case to the constant kernel case. This is done by expanding the kernel into a series of spherical harmonics (Theorem 4.41), each term
18#
發(fā)表于 2025-3-24 18:01:01 | 只看該作者
19#
發(fā)表于 2025-3-24 19:40:25 | 只看該作者
20#
發(fā)表于 2025-3-24 23:39:27 | 只看該作者
Calderón–Zygmund Kernels and Boundary Estimates2]). The desired global . estimate (12.3) is a consequence of the explicit boundary representation formula (14.2) for the solutions of the homogeneous Dirichlet problem and an . boundedness of some singular integral operators and boundary commutators in the boundary representation formula (14.2) (Th
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 11:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
安庆市| 元氏县| 昌宁县| 凤庆县| 武鸣县| 朔州市| 神木县| 临沂市| 扎囊县| 枝江市| 定兴县| 阿图什市| 连山| 克东县| 平原县| 石楼县| 九寨沟县| 桃园县| 南和县| 新蔡县| 平凉市| 阳城县| 将乐县| 东乌| 库伦旗| 徐汇区| 泸州市| 九寨沟县| 滨海县| 探索| 通江县| 青田县| 肇州县| 交城县| 梁山县| 文水县| 万荣县| 开原市| 临泉县| 石狮市| 长葛市|