找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Real Analysis Methods for Markov Processes; Singular Integrals a Kazuaki Taira Book 2024 The Editor(s) (if applicable) and The Author(s), u

[復制鏈接]
樓主: 和善
11#
發(fā)表于 2025-3-23 10:25:59 | 只看該作者
12#
發(fā)表于 2025-3-23 16:47:42 | 只看該作者
Elements of Real Analysisillation (VMO) functions, the Calderón–Zygmund decomposition (Theorem .), the John–Nirenberg inequality (Theorem .), the Hardy–Littlewood maximal function (Theorem .), sharp functions (Theorem .) and spherical harmonics (Theorem .).
13#
發(fā)表于 2025-3-23 19:15:26 | 只看該作者
14#
發(fā)表于 2025-3-23 23:02:53 | 只看該作者
15#
發(fā)表于 2025-3-24 04:55:27 | 只看該作者
16#
發(fā)表于 2025-3-24 10:01:14 | 只看該作者
Calderón–Zygmund Kernels and Their Commutatorsorks in modern history of analysis. The first main result (Theorem .) asserts the existence of singular integral operators and?the second main result (Theorem .) concerns commutators of bounded mean oscillation functions (BMO) and singular integral operators. It should be emphasized that singular in
17#
發(fā)表于 2025-3-24 12:07:36 | 只看該作者
Calderón–Zygmund Variable Kernels and Their Commutatorsns and singular integral operators (Theorems 11.2 and 11.3), generalizing Theorems 10.2 and 10.3 in Chap. 10. The main idea of proof is to reduce the variable kernel case to the constant kernel case. This is done by expanding the kernel into a series of spherical harmonics (Theorem 4.41), each term
18#
發(fā)表于 2025-3-24 18:01:01 | 只看該作者
19#
發(fā)表于 2025-3-24 19:40:25 | 只看該作者
20#
發(fā)表于 2025-3-24 23:39:27 | 只看該作者
Calderón–Zygmund Kernels and Boundary Estimates2]). The desired global . estimate (12.3) is a consequence of the explicit boundary representation formula (14.2) for the solutions of the homogeneous Dirichlet problem and an . boundedness of some singular integral operators and boundary commutators in the boundary representation formula (14.2) (Th
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 11:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
重庆市| 麦盖提县| 鲁山县| 广灵县| 且末县| 墨竹工卡县| 阜城县| 罗山县| 丹寨县| 兰州市| 深泽县| 抚宁县| 皋兰县| 郁南县| 桂东县| 即墨市| 南皮县| 温宿县| 晋中市| 杭州市| 长海县| 绥滨县| 麦盖提县| 西和县| 津市市| 新闻| 普格县| 芮城县| 蒙自县| 东山县| 中宁县| 尉氏县| 拜泉县| 禹州市| 都匀市| 鲁甸县| 二连浩特市| 睢宁县| 吉木萨尔县| 苏尼特右旗| 吐鲁番市|