找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Real Analysis; Series, Functions of Miklós Laczkovich,Vera T. Sós Textbook 2017 Springer Science+Business Media LLC 2017 Continuity of func

[復制鏈接]
樓主: 時間
11#
發(fā)表于 2025-3-23 12:57:31 | 只看該作者
https://doi.org/10.1007/978-1-4939-7369-9Continuity of functions; History of Fourier series; History of infinite series; Limit of functions; Real
12#
發(fā)表于 2025-3-23 15:13:47 | 只看該作者
Functions from , to ,,Consider a function ., where . is an arbitrary set, and let the coordinates of the vector .(.) be denoted by . for every .. In this way we define the functions ., where . for every .. We call . the .th . or . of ..
13#
發(fā)表于 2025-3-23 20:17:54 | 只看該作者
The Jordan Measure,One of the main goals of mathematical analysis, besides applications in physics, is to compute the measure of sets (arc length, area, surface area, and volume).
14#
發(fā)表于 2025-3-23 23:14:14 | 只看該作者
,Integrals of Multivariable Functions?I,The concept of the integral of a multivariable function arose as an attempt to solve some problems in mathematics, physics, and in science in general, similarly to the case of the integral of a single-variable function. We give an example from physics.
15#
發(fā)表于 2025-3-24 05:54:17 | 只看該作者
,Integrals of Multivariable Functions?II,The notion of the line integral was motivated by some problems in physics. One of these problems is the computation of the work done by a force that changes while moving a point. The mathematical model describing the situation is the following.
16#
發(fā)表于 2025-3-24 07:58:48 | 只看該作者
17#
發(fā)表于 2025-3-24 13:37:46 | 只看該作者
18#
發(fā)表于 2025-3-24 15:38:25 | 只看該作者
19#
發(fā)表于 2025-3-24 21:49:00 | 只看該作者
Miklós Laczkovich,Vera T. SósCorresponds to a second course in real analysis to follow the authors‘ book Real Analysis: Foundations and Functions of One Variable.Motivates ideas and results in analysis by exploring concepts and a
20#
發(fā)表于 2025-3-25 01:40:11 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 07:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
临清市| 翁牛特旗| 贵定县| 大庆市| 正定县| 桃江县| 庆安县| 深水埗区| 唐河县| 同江市| 恩平市| 图片| 萨嘎县| 景泰县| 中牟县| 巨鹿县| 阳信县| 壤塘县| 海宁市| 新河县| 辽中县| 宝丰县| 兴国县| 林周县| 汉阴县| 黄梅县| 南昌市| 钟祥市| 留坝县| 土默特右旗| 邹平县| 涞水县| 大英县| 南郑县| 虹口区| 金溪县| 建始县| 綦江县| 东城区| 南宫市| 陈巴尔虎旗|