找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Real Analysis; Foundations and Func Miklós Laczkovich,Vera T. Sós Textbook 2015 Springer New York 2015 Fourier series.Stieltjes integral.co

[復(fù)制鏈接]
樓主: ACE313
11#
發(fā)表于 2025-3-23 12:56:05 | 只看該作者
Functions of Bounded Variation,ce between either sum and the integral is at most ., the oscillatory sum corresponding to ...Thus the oscillatory sum is an upper bound for the difference between the approximating sums and the integral..We also know that if . is integrable, then the oscillating sum can become smaller than any fixed
12#
發(fā)表于 2025-3-23 14:04:32 | 只看該作者
13#
發(fā)表于 2025-3-23 19:24:20 | 只看該作者
The Improper Integral,nts of the interval) and are bounded on that interval. These restrictions are sometimes too strict; there are problems whose solutions require us to integrate functions on unbounded intervals, or that themselves might not be bounded.
14#
發(fā)表于 2025-3-24 01:25:46 | 只看該作者
15#
發(fā)表于 2025-3-24 03:46:46 | 只看該作者
The Definite Integral,This concept, in contrast to that of the indefinite integral, assigns numbers to functions (and not a family of functions). In the next chapter, we will see that as the name . that they share indicates, there is a strong connection between the two concepts of integrals.
16#
發(fā)表于 2025-3-24 09:43:34 | 只看該作者
Functions of Bounded Variation,ence between the approximating sums and the integral..We also know that if . is integrable, then the oscillating sum can become smaller than any fixed positive number for a sufficiently fine partition (see Theorem 14.23).
17#
發(fā)表于 2025-3-24 12:30:10 | 只看該作者
Infinite Sequences II, that is, .. ≠ 0 for all .?>?.., then 1?≤?..?≤?9, and so . also holds if .?>?... By Theorem?4.17, .. Thus for a given .?>?0, there is an .. such that . for all .?>?... So if ., then ., and thus ..?→?1.
18#
發(fā)表于 2025-3-24 15:49:08 | 只看該作者
19#
發(fā)表于 2025-3-24 21:55:54 | 只看該作者
20#
發(fā)表于 2025-3-24 23:12:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 20:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
四子王旗| 汉寿县| 临澧县| 岳普湖县| 延吉市| 元江| 张家界市| 江华| 云和县| 略阳县| 伊金霍洛旗| 马鞍山市| 武隆县| 尉犁县| 阿坝| 平安县| 遂昌县| 河北省| 潼南县| 绵阳市| 晋江市| 新巴尔虎左旗| 闸北区| 石家庄市| 嘉黎县| 长顺县| 濮阳市| 穆棱市| 台中市| 万源市| 临邑县| 治多县| 汤原县| 五莲县| 冀州市| 宜昌市| 铜梁县| 大理市| 穆棱市| 南昌县| 海口市|