找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Real Analysis; Foundations and Func Miklós Laczkovich,Vera T. Sós Textbook 2015 Springer New York 2015 Fourier series.Stieltjes integral.co

[復(fù)制鏈接]
樓主: ACE313
11#
發(fā)表于 2025-3-23 12:56:05 | 只看該作者
Functions of Bounded Variation,ce between either sum and the integral is at most ., the oscillatory sum corresponding to ...Thus the oscillatory sum is an upper bound for the difference between the approximating sums and the integral..We also know that if . is integrable, then the oscillating sum can become smaller than any fixed
12#
發(fā)表于 2025-3-23 14:04:32 | 只看該作者
13#
發(fā)表于 2025-3-23 19:24:20 | 只看該作者
The Improper Integral,nts of the interval) and are bounded on that interval. These restrictions are sometimes too strict; there are problems whose solutions require us to integrate functions on unbounded intervals, or that themselves might not be bounded.
14#
發(fā)表于 2025-3-24 01:25:46 | 只看該作者
15#
發(fā)表于 2025-3-24 03:46:46 | 只看該作者
The Definite Integral,This concept, in contrast to that of the indefinite integral, assigns numbers to functions (and not a family of functions). In the next chapter, we will see that as the name . that they share indicates, there is a strong connection between the two concepts of integrals.
16#
發(fā)表于 2025-3-24 09:43:34 | 只看該作者
Functions of Bounded Variation,ence between the approximating sums and the integral..We also know that if . is integrable, then the oscillating sum can become smaller than any fixed positive number for a sufficiently fine partition (see Theorem 14.23).
17#
發(fā)表于 2025-3-24 12:30:10 | 只看該作者
Infinite Sequences II, that is, .. ≠ 0 for all .?>?.., then 1?≤?..?≤?9, and so . also holds if .?>?... By Theorem?4.17, .. Thus for a given .?>?0, there is an .. such that . for all .?>?... So if ., then ., and thus ..?→?1.
18#
發(fā)表于 2025-3-24 15:49:08 | 只看該作者
19#
發(fā)表于 2025-3-24 21:55:54 | 只看該作者
20#
發(fā)表于 2025-3-24 23:12:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 06:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宝山区| 赣州市| 黄大仙区| 邻水| 体育| 沈阳市| 繁峙县| 都江堰市| 石屏县| 额敏县| 洪湖市| 南陵县| 遂溪县| 凤城市| 北流市| 沽源县| 安平县| 四会市| 射洪县| 新闻| 东至县| 河池市| 曲松县| 昔阳县| 蚌埠市| 团风县| 元氏县| 庆元县| 兴山县| 昭平县| 即墨市| 鄂州市| 池州市| 五原县| 明溪县| 治县。| 宁波市| 海伦市| 九台市| 睢宁县| 团风县|