找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: Reachability Problems; 13th International C Emmanuel Filiot,Rapha?l Jungers,Igor Potapov Conference proceedings 2019 Springer Nature Switze

[復(fù)制鏈接]
樓主: Tamoxifen
51#
發(fā)表于 2025-3-30 12:03:36 | 只看該作者
,On the m-eternal Domination Number of?Cactus Graphs, by a guard moving from a neighboring vertex. The m-eternal domination number is the minimum number of guards such that the graph can be defended indefinitely. In this paper we study the m-eternal domination number of cactus graphs, that is, connected graphs where each edge lies in at most one cycle
52#
發(fā)表于 2025-3-30 14:57:36 | 只看該作者
53#
發(fā)表于 2025-3-30 19:47:06 | 只看該作者
Partial Solvers for Generalized Parity Games,or parity games that execute in polynomial time, while incomplete, can solve most games in publicly available benchmark suites. In this paper, we combine those partial solvers with the classical algorithm for parity games due to Zielonka. We also extend partial solvers to generalized parity games th
54#
發(fā)表于 2025-3-30 23:14:39 | 只看該作者
Reachability in Augmented Interval Markov Chains,sition probabilities are in addition allowed to depend on one another. This new model preserves the flexibility afforded by IMCs for describing stochastic systems where the parameters are unclear, for example due to measurement error, but also allows us to specify transitions with probabilities know
55#
發(fā)表于 2025-3-31 01:08:26 | 只看該作者
56#
發(fā)表于 2025-3-31 06:57:32 | 只看該作者
57#
發(fā)表于 2025-3-31 09:26:59 | 只看該作者
58#
發(fā)表于 2025-3-31 16:32:11 | 只看該作者
59#
發(fā)表于 2025-3-31 20:21:32 | 只看該作者
60#
發(fā)表于 2025-3-31 21:50:18 | 只看該作者
On the Computation of the Minimal Coverability Set of Petri Nets,algorithm is known. The . of a Petri net can be understood as an approximation of its reachability set described by means of .-markings (. markings in which some entries may be set to infinity). It allows to solve numerous decision problems on Petri nets, such as any coverability problem. In this pa
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 13:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
四会市| 绥阳县| 望都县| 千阳县| 铜川市| 固始县| 咸丰县| 黑山县| 郧西县| 十堰市| 姚安县| 郓城县| 祥云县| 天柱县| 襄汾县| 河池市| 古浪县| 桐乡市| 凉城县| 响水县| 光泽县| 尚志市| 武隆县| 丰镇市| 安阳市| 育儿| 大埔区| 益阳市| 三原县| 皮山县| 平潭县| 迁西县| 江门市| 仙桃市| 江阴市| 嫩江县| 康马县| 务川| 武夷山市| 鄂尔多斯市| 新宾|