找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: Reachability Problems; 13th International C Emmanuel Filiot,Rapha?l Jungers,Igor Potapov Conference proceedings 2019 Springer Nature Switze

[復(fù)制鏈接]
樓主: Tamoxifen
51#
發(fā)表于 2025-3-30 12:03:36 | 只看該作者
,On the m-eternal Domination Number of?Cactus Graphs, by a guard moving from a neighboring vertex. The m-eternal domination number is the minimum number of guards such that the graph can be defended indefinitely. In this paper we study the m-eternal domination number of cactus graphs, that is, connected graphs where each edge lies in at most one cycle
52#
發(fā)表于 2025-3-30 14:57:36 | 只看該作者
53#
發(fā)表于 2025-3-30 19:47:06 | 只看該作者
Partial Solvers for Generalized Parity Games,or parity games that execute in polynomial time, while incomplete, can solve most games in publicly available benchmark suites. In this paper, we combine those partial solvers with the classical algorithm for parity games due to Zielonka. We also extend partial solvers to generalized parity games th
54#
發(fā)表于 2025-3-30 23:14:39 | 只看該作者
Reachability in Augmented Interval Markov Chains,sition probabilities are in addition allowed to depend on one another. This new model preserves the flexibility afforded by IMCs for describing stochastic systems where the parameters are unclear, for example due to measurement error, but also allows us to specify transitions with probabilities know
55#
發(fā)表于 2025-3-31 01:08:26 | 只看該作者
56#
發(fā)表于 2025-3-31 06:57:32 | 只看該作者
57#
發(fā)表于 2025-3-31 09:26:59 | 只看該作者
58#
發(fā)表于 2025-3-31 16:32:11 | 只看該作者
59#
發(fā)表于 2025-3-31 20:21:32 | 只看該作者
60#
發(fā)表于 2025-3-31 21:50:18 | 只看該作者
On the Computation of the Minimal Coverability Set of Petri Nets,algorithm is known. The . of a Petri net can be understood as an approximation of its reachability set described by means of .-markings (. markings in which some entries may be set to infinity). It allows to solve numerous decision problems on Petri nets, such as any coverability problem. In this pa
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 13:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永泰县| 海口市| 东城区| 高陵县| 城市| 武功县| 紫金县| 皋兰县| 托里县| 随州市| 和硕县| 五原县| 疏附县| 吉林省| 象州县| 栖霞市| 新昌县| 岳西县| 响水县| 利津县| 黑山县| 齐齐哈尔市| 巩义市| 济阳县| 翁牛特旗| 靖州| 柘荣县| 景泰县| 平原县| 石家庄市| 香格里拉县| 和平县| 尉犁县| 内丘县| 彭山县| 当雄县| 鲁甸县| 绿春县| 冕宁县| 九江县| 黔东|