找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Reachability Problems; 5th International Wo Giorgio Delzanno,Igor Potapov Conference proceedings 2011 Springer-Verlag GmbH Berlin Heidelber

[復(fù)制鏈接]
樓主: 不同
11#
發(fā)表于 2025-3-23 10:14:50 | 只看該作者
Improving Reachability Analysis of Infinite State Systems by Specialization,operties of these systems by applying reachability analysis techniques. We propose a method based on program specialization, which improves the effectiveness of the backward and forward reachability analyses. For backward reachability our method consists in: (i)?specializing the reactive system with
12#
發(fā)表于 2025-3-23 17:01:30 | 只看該作者
13#
發(fā)表于 2025-3-23 18:16:24 | 只看該作者
14#
發(fā)表于 2025-3-23 22:27:45 | 只看該作者
15#
發(fā)表于 2025-3-24 05:52:06 | 只看該作者
Formal Language Constrained Reachability and Model Checking Propositional Dynamic Logics,language of some class with a regular language is empty, and the model checking problem for Propositional Dynamic Logic over some class of formal languages. This allows several decidability and complexity results to be transferred, mainly from the area of formal languages to the areas of modal logics and formal language constrained reachability.
16#
發(fā)表于 2025-3-24 07:08:35 | 只看該作者
Completeness of the Bounded Satisfiability Problem for Constraint LTL,ndedly satisfiable when it admits an ultimately periodic model of the form .., where . and . are finite sequences of .. Therefore, for every formula there exists a .., such that, if there is no ultimately periodic model with |.|?≤?., then the formula is unsatisfiable.
17#
發(fā)表于 2025-3-24 12:48:44 | 只看該作者
Monotonic Abstraction for Programs with Multiply-Linked Structures, programming language. Using the notion of ., which are predicates that define sets of heaps, we can check properties such as absence of null pointer dereference and shape invariants. We report on the results from running a prototype based on the method on several programs such as insertion into and merging of doubly-linked lists.
18#
發(fā)表于 2025-3-24 17:20:10 | 只看該作者
19#
發(fā)表于 2025-3-24 22:03:43 | 只看該作者
20#
發(fā)表于 2025-3-25 02:52:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 12:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丽水市| 枞阳县| 福海县| 探索| 饶阳县| 本溪| 新营市| 泽州县| 石楼县| 永康市| 盖州市| 南昌县| 句容市| 邯郸市| 固原市| 恩平市| 调兵山市| 康保县| 西林县| 广州市| 万荣县| 巫溪县| 郓城县| 洛浦县| 阿荣旗| 鄂温| 桃园市| 沧州市| 柏乡县| 饶阳县| 突泉县| 林甸县| 霍邱县| 枝江市| 恩平市| 烟台市| 梨树县| 大关县| 喀喇| 双城市| 简阳市|