找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Raymond Smullyan on Self Reference; Melvin Fitting,Brian Rayman Book 2017 Springer International Publishing AG, part of Springer Nature 20

[復(fù)制鏈接]
樓主: Adams
21#
發(fā)表于 2025-3-25 03:50:55 | 只看該作者
Dance of the Starlings,k a Mockingbird, and other logic puzzles. Alfred A. Knopf, New York, .), to wit the Starling. In the feathers of .-calculus this bird has the plumage .. This term is usually named ., reminiscent of its inventor Sch?nfinkel and also the combinatory ornithologist Smullyan. The combinator . is importan
22#
發(fā)表于 2025-3-25 09:45:47 | 只看該作者
23#
發(fā)表于 2025-3-25 14:25:38 | 只看該作者
24#
發(fā)表于 2025-3-25 19:03:04 | 只看該作者
,G?del, Lucas, and the Soul-Searching Selfie,ly, to prove the G?del sentence for the set of arithmetical sentences she is able to prove. There are two main objections: “The agent cannot know her own program” and “The agent cannot be sure the things she can prove are consistent.” It is argued that accepting the first objection would hand the an
25#
發(fā)表于 2025-3-25 22:06:53 | 只看該作者
26#
發(fā)表于 2025-3-26 01:04:18 | 只看該作者
,Making The ‘Hardest Logic Puzzle Ever’ a Bit Harder, puzzles, but it also helps the understanding of novel forms of reasoning. In 1996, George Boolos published a famous puzzle, known as the ‘hardest logic puzzle ever’. This puzzle has been modified several times, and is known not to be ‘the most difficult of all logical puzzles’. I argue that modifie
27#
發(fā)表于 2025-3-26 06:48:12 | 只看該作者
28#
發(fā)表于 2025-3-26 09:47:29 | 只看該作者
Book 2017as a tribute to one of the great thinkers in logic, but also as a celebration of self-reference in general, to be enjoyed by all lovers of this field. Raymond Smullyan, mathematician, philosopher, musician and inventor of logic puzzles, made a lasting impact on the study of mathematical logic; accor
29#
發(fā)表于 2025-3-26 14:10:19 | 只看該作者
30#
發(fā)表于 2025-3-26 17:43:48 | 只看該作者
Knights, Knaves, Truth, Truthfulness, Grounding, Tethering, Aboutness, and Paradox,nides the Cretan accusing all Cretans of lying. Knights do not *intuitively* run into the same problem. What could prevent a Knight from truly reporting that s/he always tells the truth? Standard theories of truth DO prevent this, however, for such a report is self-referentially ungrounded. Standard theories have a problem, then! We try to fix it.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 22:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
抚州市| 夏津县| 瑞昌市| 安顺市| 界首市| 玉门市| 中西区| 岳西县| 于都县| 瑞金市| 鄂尔多斯市| 台山市| 留坝县| 喀喇| 靖边县| 合川市| 云阳县| 泗洪县| 梨树县| 邢台县| 安西县| 金寨县| 宁武县| 西安市| 即墨市| 玉树县| 桂东县| 靖江市| 宁陵县| 乌拉特后旗| 东莞市| 赞皇县| 建水县| 泰来县| 桃源县| 宜兰市| 宁波市| 巨野县| 札达县| 高平市| 正阳县|