找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Rationality of Varieties; Gavril Farkas,Gerard van der Geer,Lenny Taelman Conference proceedings 2021 The Editor(s) (if applicable) and Th

[復(fù)制鏈接]
查看: 34103|回復(fù): 57
樓主
發(fā)表于 2025-3-21 17:55:51 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Rationality of Varieties
編輯Gavril Farkas,Gerard van der Geer,Lenny Taelman
視頻videohttp://file.papertrans.cn/822/821515/821515.mp4
叢書(shū)名稱(chēng)Progress in Mathematics
圖書(shū)封面Titlebook: Rationality of Varieties;  Gavril Farkas,Gerard van der Geer,Lenny Taelman Conference proceedings 2021 The Editor(s) (if applicable) and Th
描述.This book provides an overview of the latest progress on rationality questions in algebraic geometry. It discusses new developments such as universal triviality of the Chow group of zero cycles, various aspects of stable birationality, cubic and Fano fourfolds, rationality of moduli spaces and birational invariants of group actions on varieties, contributed by the foremost experts in their fields...The question of whether an algebraic variety can be parametrized by rational functions of as many variables as its dimension has a long history and played an important role in the history of algebraic geometry. Recent developments in algebraic geometry have made this question again a focal point of research and formed the impetus to organize a conference in the series of conferences on the island of Schiermonnikoog. The book follows in the tradition of earlier volumes, which originated from conferences on the islands Texel and Schiermonnikoog...
出版日期Conference proceedings 2021
關(guān)鍵詞algebraic variety; birational invariant; Fano fourfolds; Chow group of zero cycles; moduli spaces
版次1
doihttps://doi.org/10.1007/978-3-030-75421-1
isbn_softcover978-3-030-75423-5
isbn_ebook978-3-030-75421-1Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱(chēng)Rationality of Varieties影響因子(影響力)




書(shū)目名稱(chēng)Rationality of Varieties影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Rationality of Varieties網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Rationality of Varieties網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Rationality of Varieties被引頻次




書(shū)目名稱(chēng)Rationality of Varieties被引頻次學(xué)科排名




書(shū)目名稱(chēng)Rationality of Varieties年度引用




書(shū)目名稱(chēng)Rationality of Varieties年度引用學(xué)科排名




書(shū)目名稱(chēng)Rationality of Varieties讀者反饋




書(shū)目名稱(chēng)Rationality of Varieties讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:30:47 | 只看該作者
,Rational Curves and MBM Classes on Hyperk?hler Manifolds: A Survey,This paper deals with rational curves and birational contractions on irreducible holomorphically symplectic manifold. We survey some recent results about minimal rational curves, their deformations, extremal rays associated with these curves, and the geometry of the K?hler cone.
板凳
發(fā)表于 2025-3-22 04:00:38 | 只看該作者
A Categorical Invariant for Geometrically Rational Surfaces with a Conic Bundle Structure,We define a categorical birational invariant for minimal geometrically rational surfaces with a conic bundle structure over a perfect field via components of a natural semiorthogonal decomposition. Together with the similar known result on del Pezzo surfaces, this provides a categorical birational invariant for geometrically rational surfaces.
地板
發(fā)表于 2025-3-22 06:48:07 | 只看該作者
Symbols and Equivariant Birational Geometry in Small Dimensions,We discuss the equivariant Burnside group and related new invariants in equivariant birational geometry, with a special emphasis on applications in low dimensions.
5#
發(fā)表于 2025-3-22 09:39:39 | 只看該作者
6#
發(fā)表于 2025-3-22 13:24:50 | 只看該作者
7#
發(fā)表于 2025-3-22 20:46:35 | 只看該作者
Progress in Mathematicshttp://image.papertrans.cn/r/image/821515.jpg
8#
發(fā)表于 2025-3-23 00:36:39 | 只看該作者
9#
發(fā)表于 2025-3-23 01:26:39 | 只看該作者
10#
發(fā)表于 2025-3-23 09:02:10 | 只看該作者
A Refinement of the Motivic Volume, and Specialization of Birational Types, of the motivic volume and its birational version introduced by Kontsevich and Tschinkel to prove the specialization of birational types. We also provide several explicit examples of obstructions to stable rationality arising from this technique.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 04:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
象州县| 保靖县| 平邑县| 涞水县| 秭归县| 安平县| 白银市| 怀集县| 中方县| 合山市| 永修县| 惠水县| 北流市| 保靖县| 晋中市| 石景山区| 鲁山县| 长沙县| 兖州市| 华安县| 甘南县| 新和县| 高密市| 呼和浩特市| 金塔县| 图们市| 栾川县| 紫阳县| 旌德县| 定结县| 玛曲县| 兴化市| 名山县| 无极县| 温泉县| 胶南市| 德江县| 芦山县| 浏阳市| 桂平市| 商城县|