找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Rational Points on Elliptic Curves; Joseph H. Silverman,John T. Tate Textbook 2015Latest edition Springer International Publishing Switzer

[復制鏈接]
樓主: Monsoon
11#
發(fā)表于 2025-3-23 13:26:50 | 只看該作者
Textbook 2015Latest editionnal numbers. It is this number theoretic question that is the main subject of .Rational Points on Elliptic Curves.. Topics covered include the geometry and group structure of elliptic curves, the Nagell–Lutz theorem describing points of finite order, the Mordell–Weil theorem on the finite generation
12#
發(fā)表于 2025-3-23 15:14:15 | 只看該作者
13#
發(fā)表于 2025-3-23 21:18:58 | 只看該作者
14#
發(fā)表于 2025-3-23 23:29:31 | 只看該作者
Complex Multiplication,d to use some basic theorems about extension fields and Galois groups, but nothing very fancy. We start by reminding you of most of the facts that we need, and you can look in any basic algebra text such as [14, 23, 26] for the proofs and additional background material.
15#
發(fā)表于 2025-3-24 04:42:40 | 只看該作者
16#
發(fā)表于 2025-3-24 08:51:36 | 只看該作者
Points of Finite Order, study of points of finite order on cubic curves by looking at points of order two and order three. As usual, we will assume that our non-singular cubic curve is given by a Weierstrass equation . and that the point at infinity . is taken to be the zero element for the group law.
17#
發(fā)表于 2025-3-24 13:57:38 | 只看該作者
18#
發(fā)表于 2025-3-24 18:17:53 | 只看該作者
Integer Points on Cubic Curves,), then the set of all rational points on . forms a finitely generated abelian group. So we can get every rational point on . by starting from some finite set and adding points using the geometrically defined group law.
19#
發(fā)表于 2025-3-24 22:53:00 | 只看該作者
Complex Multiplication,ean points of finite order with arbitrary complex coordinates, not just the ones with rational coordinates that we studied in Chapter 2 So we will need to use some basic theorems about extension fields and Galois groups, but nothing very fancy. We start by reminding you of most of the facts that we
20#
發(fā)表于 2025-3-24 23:42:21 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 21:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
鸡东县| 阿鲁科尔沁旗| 舟曲县| 夏津县| 项城市| 黑山县| 太仆寺旗| 苍山县| 谢通门县| 美姑县| 南和县| 咸宁市| 建昌县| 搜索| 民和| 伊通| 名山县| 施秉县| 上高县| 县级市| 军事| 广平县| 江孜县| 涿州市| 贵溪市| 永济市| 台北县| 钟山县| 旌德县| 萝北县| 康乐县| 尉犁县| 乐都县| 分宜县| 东光县| 府谷县| 肥东县| 黔西县| 孝义市| 鄂尔多斯市| 红原县|