找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Rational Points on Elliptic Curves; Joseph H. Silverman,John Tate Textbook 19921st edition Springer Science+Business Media New York 1992 A

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 11:59:21 | 只看該作者
Complex Multiplication,ere we mean points of finite order with arbitrary complex coordinates, not just the ones with rational coordinates that we studied in Chapter II. So we will need to use some basic theorems about extension fields and Galois theory, but nothing very fancy. We will start by reminding you of most of the
12#
發(fā)表于 2025-3-23 17:47:12 | 只看該作者
13#
發(fā)表于 2025-3-23 20:07:00 | 只看該作者
Points of Finite Order,n our study of points of finite order on cubic curves by looking at points of order two and order three. As usual, we will assume that our non-singular cubic curve is given by a Weierstrass equation ., and that the point at infinity . is taken to be the zero element for the group law.
14#
發(fā)表于 2025-3-24 00:02:35 | 只看該作者
Integer Points on Cubic Curves,y), then the set of all rational points on . forms a finitely generated abelian group. So we can get every rational point on . by starting from some finite set and adding points using the geometrically defined group law.
15#
發(fā)表于 2025-3-24 03:00:47 | 只看該作者
Introduction,The theory of Diophantine equations is that branch of number theory which deals with the solution of polynomial equations in either integers or rational numbers. The subject itself is named after one of the greatest of the ancient Greek algebraists, Diophantus of Alexandria,. who formulated and solved many such problems.
16#
發(fā)表于 2025-3-24 07:41:06 | 只看該作者
17#
發(fā)表于 2025-3-24 14:15:46 | 只看該作者
18#
發(fā)表于 2025-3-24 16:31:48 | 只看該作者
19#
發(fā)表于 2025-3-24 21:20:02 | 只看該作者
Undergraduate Texts in Mathematicshttp://image.papertrans.cn/r/image/821449.jpg
20#
發(fā)表于 2025-3-25 01:25:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 00:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
积石山| 龙口市| 河池市| 卢氏县| 平和县| 宽甸| 屏南县| 武邑县| 如东县| 兴城市| 天长市| 房山区| 宜宾县| 永宁县| 三明市| 宁南县| 襄垣县| 宁阳县| 萨嘎县| 西乌| 沾益县| 改则县| 宝山区| 德州市| 荔浦县| 泗水县| 吉安市| 通化市| 琼结县| 于都县| 涿州市| 安西县| 奎屯市| 南华县| 西乌| 临邑县| 宜宾县| 大渡口区| 抚顺市| 尼木县| 钦州市|