找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Rational Points and Arithmetic of Fundamental Groups; Evidence for the Sec Jakob Stix Book 2013 Springer-Verlag Berlin Heidelberg 2013 14H3

[復(fù)制鏈接]
樓主: intrinsic
11#
發(fā)表于 2025-3-23 11:51:26 | 只看該作者
12#
發(fā)表于 2025-3-23 14:56:21 | 只看該作者
13#
發(fā)表于 2025-3-23 21:46:46 | 只看該作者
Basic Geometric Operations in Terms of Sectionsbelianization and base change. In favorable circumstances we establish Galois descent for sections, see Proposition 28. We furthermore study the behaviour of sections under fibrations and finite étale covers between varieties. The notion of the anabelian fibre above a section is introduced.The resul
14#
發(fā)表于 2025-3-23 22:21:25 | 只看該作者
The Space of Sections as a Topological Spacediscrete topological space, see Lemma 44, which allows important limit arguments in arithmetically relevant cases, see Lemma 48. The fundamental notion of a neighbourhood of a section is introduced and used to describe the decomposition tower of a section.
15#
發(fā)表于 2025-3-24 04:29:56 | 只看該作者
Evaluation of Unitsection. At least for invertible functions this can be achieved via Kummer theory, see Definition 57, if we accept that the values will be taken in a certain completion of the multiplicative group of the ground field.
16#
發(fā)表于 2025-3-24 08:05:13 | 只看該作者
Cycle Classes in Anabelian Geometry90), Mochizuki (Invent. Math. 138(2):319–423, 1999; Mathematical Sciences Research Institute Publications, vol. 41, 2003; J. Math. Kyoto Univ. 47(3):451–539, 2007), Esnault and Wittenberg ( Mosc. Math. J. 9(3):451–467, 2009). After recalling and comparing several known constructions we describe yet
17#
發(fā)表于 2025-3-24 13:58:39 | 只看該作者
Injectivity in the Section Conjecturetivity. The abelian approach relies on the determination of the Kummer map for abelian varieties and their arithmetic, see Corollary 71, and also on the computation of the maximal abelian quotient extension ., see Proposition 69, which for later use in Sect. 13.5 we carefully revise also for smooth
18#
發(fā)表于 2025-3-24 15:41:39 | 只看該作者
19#
發(fā)表于 2025-3-24 19:21:42 | 只看該作者
20#
發(fā)表于 2025-3-25 00:17:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 13:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
原平市| 垫江县| 崇左市| 宜城市| 太谷县| 巴彦淖尔市| 高陵县| 手游| 桐柏县| 卓尼县| 卢氏县| 潼南县| 江陵县| 盱眙县| 柳江县| 仙游县| 山阴县| 桑植县| 无为县| 谢通门县| 石林| 南澳县| 东港市| 长顺县| 平遥县| 渑池县| 新邵县| 榆社县| 枞阳县| 崇礼县| 洞口县| 巴南区| 大连市| 河池市| 南郑县| 容城县| 延寿县| 东乌珠穆沁旗| 颍上县| 福鼎市| 剑阁县|