找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Rational Matrix Equations in Stochastic Control; Tobias Damm Book 2004 Springer-Verlag Berlin Heidelberg 2004 Generalized Lyapunov Equatio

[復(fù)制鏈接]
樓主: Autonomous
11#
發(fā)表于 2025-3-23 10:10:12 | 只看該作者
Solution of the Riccati equation,an abstract form of the Riccati operators met in the Sections 2.1 – 2.3, and the definite and the indefinite constraints mentioned in Remark 2.3.7. Recall that the LQ-stabilization problem and the Bounded Real Lemma lead to Riccati equations with definite constraints, while the disturbance attenuation problem involves an indefinite constraint.
12#
發(fā)表于 2025-3-23 17:36:06 | 只看該作者
13#
發(fā)表于 2025-3-23 21:00:07 | 只看該作者
,Newton’s method, neighbourhood of the actual solution. These results can be simplified and generalized, if the underlying space is ordered and the sequence produced by the iteration can be shown to be monotonic and bounded; this can be the case, for instance, if the nonlinear operator satisfies certain convexity conditions (compare [196] and references therein).
14#
發(fā)表于 2025-3-24 01:17:00 | 只看該作者
15#
發(fā)表于 2025-3-24 04:14:38 | 只看該作者
Rational Matrix Equations in Stochastic Control978-3-540-40001-1Series ISSN 0170-8643 Series E-ISSN 1610-7411
16#
發(fā)表于 2025-3-24 07:23:22 | 只看該作者
17#
發(fā)表于 2025-3-24 13:10:41 | 只看該作者
https://doi.org/10.1007/b10906Generalized Lyapunov Equations; Generalized Riccati Equations; H Infinity Control; Matrix; Positive Oper
18#
發(fā)表于 2025-3-24 15:19:24 | 只看該作者
Hermitian matrices and Schur complements,Throughout the text, . denotes either the field of real or the field of numbers. For simplicity we write .. rather than .. for the transpose of a real matrix and call a real symmetric matrix Hermitian. At some occasions we still need the notation .. for the transpose of a real or complex matrix – without conjugation.
19#
發(fā)表于 2025-3-24 19:08:57 | 只看該作者
20#
發(fā)表于 2025-3-25 02:50:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 03:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁国市| 灌南县| 荥阳市| 赤峰市| 富锦市| 康保县| 璧山县| 塔城市| 漳州市| 凤冈县| 汾阳市| 德州市| 抚远县| 常宁市| 康保县| 灌云县| 锦屏县| 翼城县| 全州县| 搜索| 镇赉县| 遵义市| 宝坻区| 新疆| 客服| 高台县| 荔波县| 拜泉县| 格尔木市| 龙海市| 通榆县| 铁力市| 宝丰县| 来宾市| 惠水县| 三台县| 布尔津县| 井冈山市| 衡山县| 通许县| 饶河县|