找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Rational Matrix Equations in Stochastic Control; Tobias Damm Book 2004 Springer-Verlag Berlin Heidelberg 2004 Generalized Lyapunov Equatio

[復制鏈接]
樓主: Autonomous
11#
發(fā)表于 2025-3-23 10:10:12 | 只看該作者
Solution of the Riccati equation,an abstract form of the Riccati operators met in the Sections 2.1 – 2.3, and the definite and the indefinite constraints mentioned in Remark 2.3.7. Recall that the LQ-stabilization problem and the Bounded Real Lemma lead to Riccati equations with definite constraints, while the disturbance attenuation problem involves an indefinite constraint.
12#
發(fā)表于 2025-3-23 17:36:06 | 只看該作者
13#
發(fā)表于 2025-3-23 21:00:07 | 只看該作者
,Newton’s method, neighbourhood of the actual solution. These results can be simplified and generalized, if the underlying space is ordered and the sequence produced by the iteration can be shown to be monotonic and bounded; this can be the case, for instance, if the nonlinear operator satisfies certain convexity conditions (compare [196] and references therein).
14#
發(fā)表于 2025-3-24 01:17:00 | 只看該作者
15#
發(fā)表于 2025-3-24 04:14:38 | 只看該作者
Rational Matrix Equations in Stochastic Control978-3-540-40001-1Series ISSN 0170-8643 Series E-ISSN 1610-7411
16#
發(fā)表于 2025-3-24 07:23:22 | 只看該作者
17#
發(fā)表于 2025-3-24 13:10:41 | 只看該作者
https://doi.org/10.1007/b10906Generalized Lyapunov Equations; Generalized Riccati Equations; H Infinity Control; Matrix; Positive Oper
18#
發(fā)表于 2025-3-24 15:19:24 | 只看該作者
Hermitian matrices and Schur complements,Throughout the text, . denotes either the field of real or the field of numbers. For simplicity we write .. rather than .. for the transpose of a real matrix and call a real symmetric matrix Hermitian. At some occasions we still need the notation .. for the transpose of a real or complex matrix – without conjugation.
19#
發(fā)表于 2025-3-24 19:08:57 | 只看該作者
20#
發(fā)表于 2025-3-25 02:50:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 00:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
枣强县| 新沂市| 昭苏县| 武隆县| 龙山县| 丹东市| 江门市| 姜堰市| 遵义市| 克拉玛依市| 财经| 鸡东县| 金溪县| 濮阳县| 修文县| 墨玉县| 龙井市| 咸丰县| 长泰县| 武川县| 正安县| 永泰县| 宁海县| 常熟市| 古蔺县| 石门县| 桃园县| 黄梅县| 清河县| 吉首市| 宕昌县| 肥西县| 襄垣县| 白银市| 灌南县| 东源县| 洪江市| 江门市| 揭东县| 布拖县| 苗栗市|