找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Rational Homotopy Theory and Differential Forms; Phillip Griffiths,John Morgan Book 2013Latest edition Springer Science+Business Media New

[復(fù)制鏈接]
樓主: Enkephalin
21#
發(fā)表于 2025-3-25 03:29:02 | 只看該作者
Functorality,space C and for any simplicial complex X, the map from homotopy classes of maps from X to C to the homotopy classes of maps from the minimal model of the p.l. forms on C to that for X is a functorial bijection. We reformulate this result as an equivalence of the rational homotopy category of simply
22#
發(fā)表于 2025-3-25 11:15:27 | 只看該作者
23#
發(fā)表于 2025-3-25 13:34:23 | 只看該作者
,,-Structures and ,,-Structures, then state the result that homotopy theory of commutative DGAs is equivalent to the homotopy theory of commutative A-infinity algebras, the so-called C-infinity algebras. It follows that there is a C-infinity map from the cohomology of a space to its minimal model, a map which induces the identity
24#
發(fā)表于 2025-3-25 16:25:34 | 只看該作者
25#
發(fā)表于 2025-3-25 20:57:56 | 只看該作者
DGAs and Rational Homotopy Theory,stablished, inductively one shows that the rational Postnikov tower of a space is read off from the minimal model of the p.l. forms on the space. The proof of the main inductive result, the Hirsch lemma, is postponed until Chap. .
26#
發(fā)表于 2025-3-26 02:05:42 | 只看該作者
,Eilenberg–MacLane Spaces, Cohomology, and Principal Fibrations,This chapter begins by showing that maps of a CW complex to an Eilenberg–MacLane space are classified by the elements in a cohomology group. Then principal fibrations with fiber an Eilenberg–MacLane space are classified by elements in a similar cohomology group.
27#
發(fā)表于 2025-3-26 05:14:58 | 只看該作者
The Hirsch Lemma,In this chapter, we prove the main technical result from Chap. ., namely, the result comparing principle bundles and Hirsch extensions.
28#
發(fā)表于 2025-3-26 11:23:53 | 只看該作者
29#
發(fā)表于 2025-3-26 13:15:05 | 只看該作者
Phillip Griffiths,John MorganSecond edition with fully updated content.Includes a readable introduction for non-specialists.Provides many elementary examples and exercises
30#
發(fā)表于 2025-3-26 19:50:33 | 只看該作者
978-1-4939-3699-1Springer Science+Business Media New York 2013
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 00:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
成都市| 明星| 罗源县| 津南区| 抚松县| 平定县| 遵化市| 屏南县| 铁力市| 丘北县| 邓州市| 阜新| 嘉黎县| 鹰潭市| 平昌县| 皋兰县| 尚志市| 资源县| 朝阳区| 垦利县| 潼南县| 台中市| 阿鲁科尔沁旗| 湄潭县| 威远县| 醴陵市| 柘城县| 泽州县| 桑日县| 永吉县| 太保市| 无棣县| 古浪县| 佳木斯市| 金塔县| 和政县| 宁强县| 基隆市| 隆德县| 八宿县| 筠连县|