找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Rational Homotopy Theory and Differential Forms; Phillip Griffiths,John Morgan Book 2013Latest edition Springer Science+Business Media New

[復制鏈接]
樓主: Enkephalin
21#
發(fā)表于 2025-3-25 03:29:02 | 只看該作者
Functorality,space C and for any simplicial complex X, the map from homotopy classes of maps from X to C to the homotopy classes of maps from the minimal model of the p.l. forms on C to that for X is a functorial bijection. We reformulate this result as an equivalence of the rational homotopy category of simply
22#
發(fā)表于 2025-3-25 11:15:27 | 只看該作者
23#
發(fā)表于 2025-3-25 13:34:23 | 只看該作者
,,-Structures and ,,-Structures, then state the result that homotopy theory of commutative DGAs is equivalent to the homotopy theory of commutative A-infinity algebras, the so-called C-infinity algebras. It follows that there is a C-infinity map from the cohomology of a space to its minimal model, a map which induces the identity
24#
發(fā)表于 2025-3-25 16:25:34 | 只看該作者
25#
發(fā)表于 2025-3-25 20:57:56 | 只看該作者
DGAs and Rational Homotopy Theory,stablished, inductively one shows that the rational Postnikov tower of a space is read off from the minimal model of the p.l. forms on the space. The proof of the main inductive result, the Hirsch lemma, is postponed until Chap. .
26#
發(fā)表于 2025-3-26 02:05:42 | 只看該作者
,Eilenberg–MacLane Spaces, Cohomology, and Principal Fibrations,This chapter begins by showing that maps of a CW complex to an Eilenberg–MacLane space are classified by the elements in a cohomology group. Then principal fibrations with fiber an Eilenberg–MacLane space are classified by elements in a similar cohomology group.
27#
發(fā)表于 2025-3-26 05:14:58 | 只看該作者
The Hirsch Lemma,In this chapter, we prove the main technical result from Chap. ., namely, the result comparing principle bundles and Hirsch extensions.
28#
發(fā)表于 2025-3-26 11:23:53 | 只看該作者
29#
發(fā)表于 2025-3-26 13:15:05 | 只看該作者
Phillip Griffiths,John MorganSecond edition with fully updated content.Includes a readable introduction for non-specialists.Provides many elementary examples and exercises
30#
發(fā)表于 2025-3-26 19:50:33 | 只看該作者
978-1-4939-3699-1Springer Science+Business Media New York 2013
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-15 04:22
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
高安市| 泉州市| 紫云| 两当县| 青铜峡市| 通州区| 翁源县| 大悟县| 寿光市| 桃园市| 黄石市| 乌兰察布市| 桐庐县| 德江县| 丰宁| 新昌县| 安多县| 顺昌县| 周至县| 临朐县| 珠海市| 松桃| 望江县| 黑水县| 吉林省| 开封县| 宣威市| 观塘区| 牙克石市| 沙坪坝区| 九龙城区| 闸北区| 邓州市| 株洲市| 尼木县| 晋州市| 黎城县| 漠河县| 遂昌县| 绩溪县| 凤城市|