找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Raoul Bott: Collected Papers; Volume 5 Loring W. Tu Book 2017 Springer International Publishing AG, part of Springer Nature 2017 knot invar

[復(fù)制鏈接]
查看: 52345|回復(fù): 53
樓主
發(fā)表于 2025-3-21 17:10:34 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Raoul Bott: Collected Papers
副標(biāo)題Volume 5
編輯Loring W. Tu
視頻videohttp://file.papertrans.cn/822/821152/821152.mp4
概述Fifth and final volume of Raoul Bott‘s completed works.Offers personal insights on the life and work of one of the foremost mathematicians of the twentieth century.Features topics of current interest,
叢書名稱Contemporary Mathematicians
圖書封面Titlebook: Raoul Bott: Collected Papers; Volume 5 Loring W. Tu Book 2017 Springer International Publishing AG, part of Springer Nature 2017 knot invar
描述.This book is the fifth and final volume of Raoul Bott’s Collected Papers. It collects all of Bott’s published articles since 1991 as well as some articles published earlier but missing in the earlier volumes. The volume also contains interviews with Raoul Bott, several of his previously unpublished speeches, commentaries by his collaborators such as Alberto Cattaneo and Jonathan Weitsman on their joint articles with Bott, Michael Atiyah’s obituary of Raoul Bott, Loring Tu’s authorized biography of Raoul Bott, and reminiscences of Raoul Bott by his friends, students, colleagues, and collaborators, among them Stephen Smale, David Mumford, Arthur Jaffe, Shing-Tung Yau, and Loring Tu. The mathematical articles, many inspired by physics, encompass stable vector bundles, knot and manifold invariants, equivariant cohomology, and loop spaces. The nonmathematical contributions give a sense of Bott’s approach to mathematics, style, personality, zest for life, and humanity.?In one ofthe articles, from the vantage point of his later years, Raoul Bott gives a tour-de-force historical account of one of his greatest achievements, the Bott periodicity theorem.?A large number of the articles origi
出版日期Book 2017
關(guān)鍵詞knot invariants; manifolds invariants; mathematical physics; topology; stable bundles; configuration spac
版次1
doihttps://doi.org/10.1007/978-3-319-51781-0
isbn_softcover978-3-030-09599-4
isbn_ebook978-3-319-51781-0Series ISSN 0884-7037
issn_series 0884-7037
copyrightSpringer International Publishing AG, part of Springer Nature 2017
The information of publication is updating

書目名稱Raoul Bott: Collected Papers影響因子(影響力)




書目名稱Raoul Bott: Collected Papers影響因子(影響力)學(xué)科排名




書目名稱Raoul Bott: Collected Papers網(wǎng)絡(luò)公開度




書目名稱Raoul Bott: Collected Papers網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Raoul Bott: Collected Papers被引頻次




書目名稱Raoul Bott: Collected Papers被引頻次學(xué)科排名




書目名稱Raoul Bott: Collected Papers年度引用




書目名稱Raoul Bott: Collected Papers年度引用學(xué)科排名




書目名稱Raoul Bott: Collected Papers讀者反饋




書目名稱Raoul Bott: Collected Papers讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:40:27 | 只看該作者
The Life and Works of Raoul Bottogy. It is a daunting task to improve upon his own reminiscences [B3], [B4], [B1] and commentaries on papers [B5], punctuated as they are by insight, colorful turns of phrases, and amusing anecdotes. This article is an updated reprint of one that first appeared in the book . (edited by S.-T. Yau, In
板凳
發(fā)表于 2025-3-22 04:11:48 | 只看該作者
地板
發(fā)表于 2025-3-22 06:05:35 | 只看該作者
Stable Bundles (Commentary on [95]) for the Poincaré polynomial of the moduli space .(.,?.) of stable bundles of rank . and degree . over a Riemann surface. Atiyah and Bott are motivated by Morse theory of the normsquare of the moment map for the action of gauge group on the space of all connections on the surface (an infinite-dimens
5#
發(fā)表于 2025-3-22 11:39:28 | 只看該作者
6#
發(fā)表于 2025-3-22 14:02:09 | 只看該作者
7#
發(fā)表于 2025-3-22 18:44:05 | 只看該作者
On Raoul Bott’s “On Invariants of Manifold” (Commentary on [106], [107])e paragraph—a paragraph which I think I influenced and which ended up influencing me very deeply. A paragraph I am sure Raoul was uncomfortable writing, for at the time he was uncomfortable with his understanding of the underlying mathematics as I have explained it to him?[BN]—uncomfortable enough t
8#
發(fā)表于 2025-3-22 21:16:43 | 只看該作者
9#
發(fā)表于 2025-3-23 02:42:00 | 只看該作者
Integral Invariants of 3-Manifolds (Commentary on [111], [114])as the critical time when I had to decide what to do with my life, including whether I should complete my move to mathematics. At the time I was working on perturbative topological field theories and one day, while I was alone in my office, I was visited by a tall guy who said he was interested in w
10#
發(fā)表于 2025-3-23 07:52:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 11:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
波密县| 九江市| 鄂州市| 镇沅| 徐州市| 雅江县| 灵川县| 东台市| 晋中市| 荣成市| 钟山县| 松滋市| 南昌县| 苍南县| 高淳县| 南华县| 莒南县| 永春县| 德庆县| 巴彦县| 铁岭市| 邛崃市| 德化县| 滨州市| 黔南| 常熟市| 南昌市| 东乡县| 府谷县| 延吉市| 浠水县| 黄骅市| 二连浩特市| 琼海市| 衡南县| 株洲县| 青田县| 通道| 耿马| 保靖县| 永吉县|