找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Randomized Algorithms for Analysis and Control of Uncertain Systems; With Applications Roberto Tempo,Giuseppe Calafiore,Fabrizio Dabbene Bo

[復制鏈接]
樓主: Helmet
21#
發(fā)表于 2025-3-25 05:30:19 | 只看該作者
Monte Carlo Methods, Carlo method has been widely used for simulations of various physical and mathematical systems and has a very long history that began in 1949 with the seminal paper of Metropolis and Ulam. The name Monte Carlo probably originated from the famous casino in Monaco and reflects the random and repetiti
22#
發(fā)表于 2025-3-25 09:22:33 | 只看該作者
23#
發(fā)表于 2025-3-25 12:17:43 | 只看該作者
Statistical Learning Theory,ed sample complexity. This theory provides a fundamental extension of the probability inequalities studied in Chap.?. to the case when parameterized families of functions are considered, instead of a fixed function. The chapter formally studies the UCEM (uniform convergence of empirical means) prope
24#
發(fā)表于 2025-3-25 17:23:48 | 只看該作者
Randomized Algorithms in Systems and Control,is of uncertain systems, which are based on the Monte Carlo methods previously studied. Various meta-algorithms for probabilistic performance verification and probabilistic worst-case performance are introduced. For control design, subsequent chapters, which are highlighted here, discuss in detail f
25#
發(fā)表于 2025-3-25 20:42:15 | 只看該作者
Sequential Methods for Probabilistic Design,framework that encompasses most of the sequential algorithms for feasibility that appeared in the literature. In particular, under a convexity assumption in the design parameters, we develop stochastic approximation algorithms that return a so-called reliable design. The notions of probabilistic ora
26#
發(fā)表于 2025-3-26 02:23:06 | 只看該作者
27#
發(fā)表于 2025-3-26 04:35:20 | 只看該作者
Learning-Based Probabilistic Design,sign of systems affected by uncertainty formulating a learning-based approach. In particular, we develop a randomized technique for solving a nonconvex semi-infinite optimization problem and compute the related sample complexity. A sequential algorithm which provides a solution to the same problem i
28#
發(fā)表于 2025-3-26 10:59:51 | 只看該作者
Random Number and Variate Generation,ariate and multivariate cases. These methods can be traced back to the issue of generating uniform random numbers in the interval [0,1]. Subsequently, we study the problem of univariate random generation. In particular, we present some standard results regarding transformations between random variab
29#
發(fā)表于 2025-3-26 13:26:49 | 只看該作者
30#
發(fā)表于 2025-3-26 16:57:40 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-23 19:59
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
衡南县| 新竹市| 辽源市| 东源县| 防城港市| 嘉峪关市| 和龙市| 德江县| 宣汉县| 大港区| 湟中县| 井冈山市| 大新县| 正蓝旗| 彰化县| 稻城县| 海丰县| 大荔县| 泰安市| 拜城县| 文登市| 乌兰县| 和硕县| 松阳县| 高淳县| 灌云县| 密云县| 云龙县| 贵南县| 济阳县| 饶平县| 广汉市| 靖江市| 东辽县| 讷河市| 丘北县| 柏乡县| 十堰市| 高淳县| 普宁市| 资源县|