找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Randomization and Approximation Techniques in Computer Science; Second International Michael Luby,José D. P. Rolim,Maria Serna Conference p

[復制鏈接]
樓主: SPARK
31#
發(fā)表于 2025-3-26 23:17:46 | 只看該作者
32#
發(fā)表于 2025-3-27 04:20:50 | 只看該作者
33#
發(fā)表于 2025-3-27 08:22:37 | 只看該作者
34#
發(fā)表于 2025-3-27 11:38:22 | 只看該作者
35#
發(fā)表于 2025-3-27 14:52:39 | 只看該作者
36#
發(fā)表于 2025-3-27 21:48:36 | 只看該作者
Talagrand’s Inequality and Locality in Distributed Computing analysis of distributed randomized algorithms that work in the locality paradigm. Two features of the inequality are crucially used in the analysis: first, very refined control on the influence of the underlying variables can be exercised to get signicantly stronger bounds by exploiting the non-uni
37#
發(fā)表于 2025-3-27 23:16:18 | 只看該作者
38#
發(fā)表于 2025-3-28 05:15:28 | 只看該作者
Combinatorial Linear Programming: Geometry Can Helppolynomial on all actual linear programs in the class. In contrast, the subexponential analysis is known to be best possible for general instances in . Thus, we identify a “geometric” property of linear programming that goes beyond all abstract notions previously employed in generalized linear progr
39#
發(fā)表于 2025-3-28 08:55:19 | 只看該作者
A Note on Bounding the Mixing Time by Linear ProgrammingThe linear minimization program we construct has one variable per state and (the square of) its solution is an upper bound on the mixing time. The proof of this theorem uses the coupling technique and a generalization of the distance function commonly used in this context. Explicit solutions are obt
40#
發(fā)表于 2025-3-28 11:41:10 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 14:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
威远县| 五峰| 阜阳市| 呼和浩特市| 镇原县| 安多县| 淮滨县| 宁晋县| 石景山区| 扎囊县| 额济纳旗| 麻江县| 兴安盟| 金乡县| 滨海县| 大足县| 香港 | 于田县| 达尔| 社旗县| 广河县| 根河市| 方山县| 新郑市| 泸水县| 且末县| 新丰县| 雅安市| 酒泉市| 韩城市| 思茅市| 丰都县| 冀州市| 永宁县| 泰安市| 夹江县| 安泽县| 宣威市| 绍兴县| 新营市| 金寨县|