找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Randomization and Approximation Techniques in Computer Science; Second International Michael Luby,José D. P. Rolim,Maria Serna Conference p

[復制鏈接]
樓主: SPARK
31#
發(fā)表于 2025-3-26 23:17:46 | 只看該作者
32#
發(fā)表于 2025-3-27 04:20:50 | 只看該作者
33#
發(fā)表于 2025-3-27 08:22:37 | 只看該作者
34#
發(fā)表于 2025-3-27 11:38:22 | 只看該作者
35#
發(fā)表于 2025-3-27 14:52:39 | 只看該作者
36#
發(fā)表于 2025-3-27 21:48:36 | 只看該作者
Talagrand’s Inequality and Locality in Distributed Computing analysis of distributed randomized algorithms that work in the locality paradigm. Two features of the inequality are crucially used in the analysis: first, very refined control on the influence of the underlying variables can be exercised to get signicantly stronger bounds by exploiting the non-uni
37#
發(fā)表于 2025-3-27 23:16:18 | 只看該作者
38#
發(fā)表于 2025-3-28 05:15:28 | 只看該作者
Combinatorial Linear Programming: Geometry Can Helppolynomial on all actual linear programs in the class. In contrast, the subexponential analysis is known to be best possible for general instances in . Thus, we identify a “geometric” property of linear programming that goes beyond all abstract notions previously employed in generalized linear progr
39#
發(fā)表于 2025-3-28 08:55:19 | 只看該作者
A Note on Bounding the Mixing Time by Linear ProgrammingThe linear minimization program we construct has one variable per state and (the square of) its solution is an upper bound on the mixing time. The proof of this theorem uses the coupling technique and a generalization of the distance function commonly used in this context. Explicit solutions are obt
40#
發(fā)表于 2025-3-28 11:41:10 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 14:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
淅川县| 禹州市| 弥渡县| 承德县| 沁源县| 东兴市| 天气| 阿拉尔市| 夏邑县| 藁城市| 蒲江县| 文化| 托克逊县| 定南县| 喀什市| 来凤县| 建水县| 新巴尔虎右旗| 阿城市| 涿鹿县| 乌审旗| 屯昌县| 穆棱市| 仲巴县| 西吉县| 广昌县| 麻城市| 雷州市| 新密市| 揭西县| 临沂市| 安塞县| 都江堰市| 徐闻县| 德安县| 武鸣县| 安庆市| 新兴县| 安达市| 长汀县| 建阳市|