找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Random-Like Bi-level Decision Making; Jiuping Xu,Zongmin Li,Zhimiao Tao Book 2016 Springer Science+Business Media Singapore 2016 Random-li

[復(fù)制鏈接]
樓主: FETID
11#
發(fā)表于 2025-3-23 12:55:24 | 只看該作者
Bi-Level Decision Making in Random Phenomenon,dual outcomes are uncertain, a regular distribution can be seen after many repetitions. Random phenomena can be found in many problems, such as random networks (Jae-Hyeok et?al., Acs Appl Mater Interfaces 7(3):1560–1567, 2015), stochastic processes (Barone-Adesi, Stochastic processes. Wiley encyclop
12#
發(fā)表于 2025-3-23 13:58:52 | 只看該作者
13#
發(fā)表于 2025-3-23 19:28:52 | 只看該作者
14#
發(fā)表于 2025-3-23 23:20:18 | 只看該作者
15#
發(fā)表于 2025-3-24 03:56:33 | 只看該作者
Book 2016t frequently used, the bi-level model addresses conflicts which exist in multi-level decision making processes.?From the perspective of bi-level structure and uncertainty, this book takes real-life problems as the background, focuses on the so-called random-like uncertainty, and develops the general
16#
發(fā)表于 2025-3-24 08:33:18 | 只看該作者
17#
發(fā)表于 2025-3-24 14:38:30 | 只看該作者
Bi-Level Decision Making in Random Phenomenon, (RWRAP). The first section introduces the background to the problem, gives the bi-level problem description and discusses the random phenomena in the RWRAP. Then, several bi-level decision making models with random coefficients are developed and the transformation methods and properties are discuss
18#
發(fā)表于 2025-3-24 16:42:53 | 只看該作者
19#
發(fā)表于 2025-3-24 20:58:52 | 只看該作者
Bi-Level Decision Making in Ra-Fu Phenomenon,equired to be considered simultaneously. From a viewpoint of ambiguity and randomness different from fuzzy random variables?(Kr?tschmer V, Fuzzy Sets Syst 123(1):1–9, 2001; Kruse and Meyer, Statistics with vague data. Springer, Dordrecht, 1987; Kwakernaak, Inf Sci 15(1):1–29, 1978; Puri and Ralescu,
20#
發(fā)表于 2025-3-25 00:23:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 04:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高尔夫| 揭阳市| 探索| 弥渡县| 江城| 镇原县| 迁西县| 马公市| 抚宁县| 玉门市| 常熟市| 龙陵县| 三江| 寿光市| 黄平县| 祁门县| 江达县| 宁强县| 含山县| 佛学| 崇信县| 襄樊市| 行唐县| 桐柏县| 兴国县| 内江市| 汉沽区| 德清县| 扶风县| 巨鹿县| 南通市| 蒲江县| 明水县| 宾川县| 宜昌市| 玉树县| 启东市| 金寨县| 花垣县| 依兰县| 杨浦区|