找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Random Walks on Infinite Groups; Steven P. Lalley Textbook 2023 The Editor(s) (if applicable) and The Author(s), under exclusive license t

[復(fù)制鏈接]
查看: 14842|回復(fù): 43
樓主
發(fā)表于 2025-3-21 16:29:29 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Random Walks on Infinite Groups
編輯Steven P. Lalley
視頻videohttp://file.papertrans.cn/822/821102/821102.mp4
概述First textbook devoted solely to random walks on infinite, nonabelian groups.Integrated treatment of measure-theoretic probability and random walk theory.First textbook to treat Kleiner’s approach to
叢書名稱Graduate Texts in Mathematics
圖書封面Titlebook: Random Walks on Infinite Groups;  Steven P. Lalley Textbook 2023 The Editor(s) (if applicable) and The Author(s), under exclusive license t
描述.This text presents the basic theory of random walks on infinite, finitely generated groups, along with certain background material in measure-theoretic probability. The main objective is to show how structural features of a group, such as amenability/nonamenability, affect qualitative aspects of symmetric random walks on the group, such as transience/recurrence, speed, entropy, and existence or nonexistence of nonconstant, bounded harmonic functions. The book will be suitable as a textbook for beginning graduate-level courses or independent study by graduate students and advanced undergraduate students in mathematics with a solid grounding in measure theory and a basic familiarity with the elements of group theory. The first seven chapters could also be used as the basis for a short course?covering the main results regarding transience/recurrence, decay of return probabilities, and speed. The book has been organized and written so as to be accessible not only to students in probability theory, but also to students whose primary interests are in geometry, ergodic theory, or geometric group theory..
出版日期Textbook 2023
關(guān)鍵詞Random walk; Random walk textbook; Random walk on finitely generated group; Poisson boundaries of rando
版次1
doihttps://doi.org/10.1007/978-3-031-25632-5
isbn_softcover978-3-031-25634-9
isbn_ebook978-3-031-25632-5Series ISSN 0072-5285 Series E-ISSN 2197-5612
issn_series 0072-5285
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Random Walks on Infinite Groups影響因子(影響力)




書目名稱Random Walks on Infinite Groups影響因子(影響力)學(xué)科排名




書目名稱Random Walks on Infinite Groups網(wǎng)絡(luò)公開度




書目名稱Random Walks on Infinite Groups網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Random Walks on Infinite Groups被引頻次




書目名稱Random Walks on Infinite Groups被引頻次學(xué)科排名




書目名稱Random Walks on Infinite Groups年度引用




書目名稱Random Walks on Infinite Groups年度引用學(xué)科排名




書目名稱Random Walks on Infinite Groups讀者反饋




書目名稱Random Walks on Infinite Groups讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:17:41 | 只看該作者
Subadditivity and Its Ramifications,Every random walk on a finitely generated group Γ whose step distribution has a finite first moment — that is, such that .|..|?
板凳
發(fā)表于 2025-3-22 04:28:59 | 只看該作者
Entropy,In Chapter . we showed that the Liouville property is equivalent to triviality of the invariant .-algebra, and that this in turn is equivalent to weakly ergodicity of the underlying Markov chain. For random walks on finitely generated groups there is another equivalent condition.
地板
發(fā)表于 2025-3-22 07:03:29 | 只看該作者
Steven P. LalleyFirst textbook devoted solely to random walks on infinite, nonabelian groups.Integrated treatment of measure-theoretic probability and random walk theory.First textbook to treat Kleiner’s approach to
5#
發(fā)表于 2025-3-22 08:58:07 | 只看該作者
978-3-031-25634-9The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
6#
發(fā)表于 2025-3-22 12:53:49 | 只看該作者
Random Walks on Infinite Groups978-3-031-25632-5Series ISSN 0072-5285 Series E-ISSN 2197-5612
7#
發(fā)表于 2025-3-22 20:41:21 | 只看該作者
8#
發(fā)表于 2025-3-22 21:40:37 | 只看該作者
9#
發(fā)表于 2025-3-23 04:46:22 | 只看該作者
10#
發(fā)表于 2025-3-23 08:55:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-28 14:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
科技| 临安市| 威宁| 南部县| 慈溪市| 灵宝市| 民丰县| 嘉鱼县| 河南省| 渭源县| 通山县| 普格县| 神木县| 石家庄市| 木里| 广州市| 公主岭市| 廊坊市| 萨嘎县| 汕头市| 东宁县| 宁陕县| 枞阳县| 柳江县| 肇庆市| 中西区| 闸北区| 商南县| 乌拉特后旗| 博罗县| 江安县| 中西区| 西贡区| 盖州市| 滨海县| 永德县| 双辽市| 永福县| 团风县| 新兴县| 抚州市|