找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Random Walk, Brownian Motion, and Martingales; Rabi Bhattacharya,Edward C. Waymire Textbook 2021 Springer Nature Switzerland AG 2021 Stoch

[復(fù)制鏈接]
樓主: 巡洋
51#
發(fā)表于 2025-3-30 09:03:48 | 只看該作者
52#
發(fā)表于 2025-3-30 12:41:40 | 只看該作者
53#
發(fā)表于 2025-3-30 19:25:47 | 只看該作者
ArcSine Law Asymptotics,y. The implicit symmetry of this scenario results in the counterintuitive phenomena that in a long series of plays it is not unlikely that one of the players will remain on the winning side while the other player loses for more than half of the series. This chapter derives the distribution of (a) th
54#
發(fā)表于 2025-3-30 21:38:38 | 只看該作者
Textbook 2021n motion, and martingales. Building from simple examples, the authors focus on developing context and intuition before formalizing the theory of each topic. This inviting approach illuminates the key ideas and computations in the proofs, forming an ideal basis for further study...Consisting of many
55#
發(fā)表于 2025-3-31 04:00:31 | 只看該作者
56#
發(fā)表于 2025-3-31 05:53:26 | 只看該作者
The Simple Random Walk II: First Passage Times,tric random walk, referred to as null recurrence, showing that while the walker is certain to reach ., the expected time .. This refinement involves an application of Stirling’s asymptotic formula for .!, for which a proof is also provided. An extension to random walks on the integers that do not skip integer states to the left is also given.
57#
發(fā)表于 2025-3-31 12:26:40 | 只看該作者
The Functional Central Limit Theorem (FCLT),otion, regardless of the specific random walk increments, with a finite second moment. The proof given here is by a beautiful technique of Skorokhod in which the random walk paths are embedded within the Brownian motion.
58#
發(fā)表于 2025-3-31 15:49:16 | 只看該作者
The Poisson Process, Compound Poisson Process, and Poisson Random Field,s a fundamentally important example from the perspective of both applications and general representations of processes with independent increments. As such it may be viewed as a continuous parameter generalization of the random walk.
59#
發(fā)表于 2025-3-31 21:04:07 | 只看該作者
60#
發(fā)表于 2025-4-1 00:19:07 | 只看該作者
The Simple Random Walk I: Associated Boundary Value Distributions, Transience, and Recurrence,ce, are identified in the course of the analysis. Recurrence is a form of “stochastic periodicity” in which the process revisits a state (or arbitrarily small neighborhood) infinitely often, while transience refers to the phenomena in which there are at most finitely many returns.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 01:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
久治县| 葫芦岛市| 宜春市| 雅江县| 司法| 康乐县| 越西县| 博白县| 武定县| 莒南县| 乌拉特中旗| 青神县| 北宁市| 延边| 邹平县| 富川| 钟山县| 抚州市| 南宁市| 肥城市| 德兴市| 建宁县| 中宁县| 磐安县| 布拖县| 化德县| 新乡市| 瑞丽市| 襄汾县| 屏南县| 德惠市| 徐汇区| 河南省| 开原市| 左云县| 西峡县| 襄樊市| 泰兴市| 都昌县| 游戏| 于田县|