找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Random Trees; An Interplay between Michael Drmota Book 2009 Springer-Verlag Vienna 2009 Combinatorics.Graph.Graph theory.Probability.Random

[復(fù)制鏈接]
樓主: invigorating
21#
發(fā)表于 2025-3-25 07:10:39 | 只看該作者
22#
發(fā)表于 2025-3-25 08:26:02 | 只看該作者
23#
發(fā)表于 2025-3-25 14:53:06 | 只看該作者
24#
發(fā)表于 2025-3-25 18:59:47 | 只看該作者
Planar Graphs,nalysis. From this point of view outerplanar graphs and series-parallel graphs — these are two subclasses of planar graphs that we will study first — are more tree-like than the class of all planar graphs, since the singularity structure of the corresponding generating functions is of square root ty
25#
發(fā)表于 2025-3-25 20:20:35 | 只看該作者
Recursive Algorithms and the Contraction Method,the solutions of the subproblems appropriately. If this idea is iteratively (or recursively) applied then one speaks of a . and, moreover, these kinds of algorithms give rise to a (hidden) tree structure.
26#
發(fā)表于 2025-3-26 01:41:06 | 只看該作者
Classes of Random Trees,unting problems. In particular we distinguish between rooted and unrooted, plane and non-plane, and labelled and unlabelled trees. It is also possible to modify the counting procedure by putting certain weights on trees, for example, by using the degree distribution.
27#
發(fā)表于 2025-3-26 05:27:01 | 只看該作者
Generating Functions,y can be used to encode the distribution of random variables that are related to counting problems and, hence, asymptotic methods can be applied to obtain probabilistic limit theorems like central limit theorems.
28#
發(fā)表于 2025-3-26 11:15:20 | 只看該作者
Advanced Tree Counting,las for basic tree classes and asymptotic formulas for simply generated trees and Pólya trees. However, the main goal is to show that certain tree parameters that behave . (in a proper sense) satisfy a central limit theorem in a natural probabilistic setting.
29#
發(fā)表于 2025-3-26 15:51:32 | 只看該作者
30#
發(fā)表于 2025-3-26 19:17:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 18:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
封开县| 汝城县| 北安市| 萍乡市| 中阳县| 册亨县| 韩城市| 三台县| 郯城县| 临潭县| 天峨县| 嘉定区| 南川市| 新民市| 瑞安市| 邛崃市| 潞城市| 阿鲁科尔沁旗| 河东区| 航空| 黄山市| 松滋市| 甘孜县| 长顺县| 丽江市| 绵竹市| 宁南县| 岐山县| 昔阳县| 明星| 堆龙德庆县| 乐安县| 海南省| 芒康县| 吴旗县| 册亨县| 赤壁市| 巫溪县| 金溪县| 桦甸市| 常山县|