找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Random Perturbations of Dynamical Systems; Yuri Kifer Book 1988 Birkh?user Boston 1988 Lyapunov stability.Parameter.differential equation.

[復制鏈接]
查看: 50087|回復: 35
樓主
發(fā)表于 2025-3-21 18:32:26 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Random Perturbations of Dynamical Systems
編輯Yuri Kifer
視頻videohttp://file.papertrans.cn/822/821073/821073.mp4
叢書名稱Progress in Probability
圖書封面Titlebook: Random Perturbations of Dynamical Systems;  Yuri Kifer Book 1988 Birkh?user Boston 1988 Lyapunov stability.Parameter.differential equation.
描述Mathematicians often face the question to which extent mathematical models describe processes of the real world. These models are derived from experimental data, hence they describe real phenomena only approximately. Thus a mathematical approach must begin with choosing properties which are not very sensitive to small changes in the model, and so may be viewed as properties of the real process. In particular, this concerns real processes which can be described by means of ordinary differential equations. By this reason different notions of stability played an important role in the qualitative theory of ordinary differential equations commonly known nowdays as the theory of dynamical systems. Since physical processes are usually affected by an enormous number of small external fluctuations whose resulting action would be natural to consider as random, the stability of dynamical systems with respect to random perturbations comes into the picture. There are differences between the study of stability properties of single trajectories, i. e. , the Lyapunov stability, and the global stability of dynamical systems. The stochastic Lyapunov stability was dealt with in Hasminskii [Has]. In t
出版日期Book 1988
關鍵詞Lyapunov stability; Parameter; differential equation; dynamical systems; ordinary differential equation;
版次1
doihttps://doi.org/10.1007/978-1-4615-8181-9
isbn_softcover978-1-4615-8183-3
isbn_ebook978-1-4615-8181-9Series ISSN 1050-6977 Series E-ISSN 2297-0428
issn_series 1050-6977
copyrightBirkh?user Boston 1988
The information of publication is updating

書目名稱Random Perturbations of Dynamical Systems影響因子(影響力)




書目名稱Random Perturbations of Dynamical Systems影響因子(影響力)學科排名




書目名稱Random Perturbations of Dynamical Systems網絡公開度




書目名稱Random Perturbations of Dynamical Systems網絡公開度學科排名




書目名稱Random Perturbations of Dynamical Systems被引頻次




書目名稱Random Perturbations of Dynamical Systems被引頻次學科排名




書目名稱Random Perturbations of Dynamical Systems年度引用




書目名稱Random Perturbations of Dynamical Systems年度引用學科排名




書目名稱Random Perturbations of Dynamical Systems讀者反饋




書目名稱Random Perturbations of Dynamical Systems讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:48:35 | 只看該作者
Random perturbations of hyperbolic and expanding transformations,In this chapter we shall study the asymptotical behavior of invariant measures, entropies, and other characteristics of random perturbations of dynamical systems with complicated dynamics satisfying certain hyperbolicity or expanding conditions.
板凳
發(fā)表于 2025-3-22 03:59:16 | 只看該作者
Applications to Partial Differential Equations,In this chapter we shall study the asymptotical behavior of eigenvalues of elliptic differential operators generating diffusion perturbations of flows. For some applications to boundary value problems we refer the reader to Kifer [Ki7] and Eizenberg [Ei]. Approaches to other situations can be found in Freidlin and Wentzell [FW].
地板
發(fā)表于 2025-3-22 07:10:17 | 只看該作者
5#
發(fā)表于 2025-3-22 10:00:14 | 只看該作者
6#
發(fā)表于 2025-3-22 15:43:53 | 只看該作者
Random Perturbations of Some Special Models,cal system. These models lack the shadowing property for some pseudo-orbits. Misiurewicz’s map treated in Section 4.2 is also not uniformly expanding. However, we shall see how to modify the approach of Chapter II in order to overcome these complications.
7#
發(fā)表于 2025-3-22 18:17:01 | 只看該作者
8#
發(fā)表于 2025-3-22 22:39:44 | 只看該作者
Random Perturbations of Dynamical Systems978-1-4615-8181-9Series ISSN 1050-6977 Series E-ISSN 2297-0428
9#
發(fā)表于 2025-3-23 04:07:02 | 只看該作者
1050-6977 om experimental data, hence they describe real phenomena only approximately. Thus a mathematical approach must begin with choosing properties which are not very sensitive to small changes in the model, and so may be viewed as properties of the real process. In particular, this concerns real processe
10#
發(fā)表于 2025-3-23 05:33:03 | 只看該作者
Introduction,ental data, hence they describe real phenomena only approximately. Thus a mathematical approach must begin with choosing properties which are not very sensitive to small changes in the model, and so may be viewed as properties of the real process. In particular, this concerns real processes which ca
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-8 16:55
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
滁州市| 彩票| 客服| 任丘市| 新乡县| 会泽县| 区。| 平定县| 德清县| 临城县| 临武县| 博野县| 井冈山市| 波密县| 广昌县| 平利县| 海盐县| 荆州市| 灵台县| 紫金县| 侯马市| 建瓯市| 安龙县| 得荣县| 静宁县| 宜君县| 莫力| 滦平县| 科技| 临安市| 龙海市| 通河县| 嘉荫县| 广平县| 开远市| 鹤壁市| 克什克腾旗| 竹溪县| 长岛县| 北安市| 台中市|