找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Random Matrix Theory with an External Source; Edouard Brézin,Shinobu Hikami Book 2016 The Author(s) 2016 Random matrix theory.Gaussian ran

[復(fù)制鏈接]
樓主: 筆記
11#
發(fā)表于 2025-3-23 10:01:38 | 只看該作者
12#
發(fā)表于 2025-3-23 15:40:07 | 只看該作者
Open Intersection Numbers,The intersection numbers are defined on the moduli space of Riemann surface with .-marked points and genus .. When Riemann surface is cut and has boundary, the open intersection numbers appear. There appear open strings which touch to the boundary.
13#
發(fā)表于 2025-3-23 18:28:24 | 只看該作者
,Gromov–Witten Invariants, P, Model,The intersection numbers of .-spin curves is a simple example of more general Gromov–Witten invariants, where the manifold . is a point.
14#
發(fā)表于 2025-3-24 01:42:57 | 只看該作者
15#
發(fā)表于 2025-3-24 03:42:37 | 只看該作者
16#
發(fā)表于 2025-3-24 08:39:14 | 只看該作者
2197-1757 of characteristic polynomials is essential for obtaining such topological invariants. The analysis is extended to nonorientable surfaces and to surfaces with boundaries..978-981-10-3315-5978-981-10-3316-2Series ISSN 2197-1757 Series E-ISSN 2197-1765
17#
發(fā)表于 2025-3-24 11:18:14 | 只看該作者
text, Immigration Processes and Health in the U.S.: A Brief History, Alternative and Complementary Medicine, Culture-Specific Diagnoses, Health Determinants, Occupational and Environmental Health, Methodologica978-1-4419-5659-0
18#
發(fā)表于 2025-3-24 18:53:17 | 只看該作者
Book 2016r characteristics, and the Gromov–Witten invariants. A remarkable duality for the average of characteristic polynomials is essential for obtaining such topological invariants. The analysis is extended to nonorientable surfaces and to surfaces with boundaries..
19#
發(fā)表于 2025-3-24 20:47:00 | 只看該作者
20#
發(fā)表于 2025-3-25 02:47:26 | 只看該作者
Intersection Numbers of Curves,chy. Kontsevich (Commun Math Phys 147:1–23, 1992, [89]) has proved this conjecture with the use of an Airy matrix model. In addition it has been realized that matrix models of this type are examples of an exact closed/open strings duality (Gaiotto and Rastelli, JHEP 07:053, 2005, [63]).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 14:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
邳州市| 天长市| 穆棱市| 高邮市| 运城市| 博兴县| 鹤庆县| 肥乡县| 出国| 措美县| 永川市| 霍邱县| 绩溪县| 太谷县| 澳门| 玛纳斯县| 隆子县| 山东| 新野县| 神农架林区| 宁阳县| 宿州市| 岳阳县| 营口市| 江油市| 东阳市| 平舆县| 库尔勒市| 股票| 江北区| 丘北县| 岫岩| 乡宁县| 武安市| 田东县| 莲花县| 西平县| 始兴县| 瑞安市| 鲜城| 秀山|