找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Random Fields of Piezoelectricity and Piezomagnetism; Correlation Structur Anatoliy Malyarenko,Martin Ostoja-Starzewski,Amirh Book 2020 The

[復(fù)制鏈接]
查看: 14779|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:21:33 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Random Fields of Piezoelectricity and Piezomagnetism
副標(biāo)題Correlation Structur
編輯Anatoliy Malyarenko,Martin Ostoja-Starzewski,Amirh
視頻videohttp://file.papertrans.cn/822/821047/821047.mp4
概述Reviews displacement-based and stress-based theories of linear piezoelectric and piezomagnetic materials.Gives an account of the corresponding variational principles.Presents a random field formulatio
叢書名稱SpringerBriefs in Applied Sciences and Technology
圖書封面Titlebook: Random Fields of Piezoelectricity and Piezomagnetism; Correlation Structur Anatoliy Malyarenko,Martin Ostoja-Starzewski,Amirh Book 2020 The
描述.Random fields are a necessity when formulating stochastic continuum theories. In this book, a theory of random piezoelectric and piezomagnetic materials is developed. First, elements of the continuum mechanics of electromagnetic solids are presented. Then the relevant linear governing equations are introduced, written in terms of either a displacement approach or a stress approach, along with linear variational principles. On this basis, a statistical description of second-order (statistically) homogeneous and isotropic rank-3 tensor-valued random fields is given. With a group-theoretic foundation, correlation functions and their spectral counterparts are obtained in terms of stochastic integrals with respect to certain random measures for the fields that belong to orthotropic, tetragonal, and cubic crystal systems. The target audience will primarily comprise researchers and graduate students in theoretical mechanics, statistical physics, and probability..
出版日期Book 2020
關(guān)鍵詞00A69, 74Axx, 60G60; Piezoelectricity; Piezomagnetism; Random Field; Theoretical Mechanics; Applied Mathe
版次1
doihttps://doi.org/10.1007/978-3-030-60064-8
isbn_softcover978-3-030-60063-1
isbn_ebook978-3-030-60064-8Series ISSN 2191-530X Series E-ISSN 2191-5318
issn_series 2191-530X
copyrightThe Author(s), under exclusive license to Springer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Random Fields of Piezoelectricity and Piezomagnetism影響因子(影響力)




書目名稱Random Fields of Piezoelectricity and Piezomagnetism影響因子(影響力)學(xué)科排名




書目名稱Random Fields of Piezoelectricity and Piezomagnetism網(wǎng)絡(luò)公開度




書目名稱Random Fields of Piezoelectricity and Piezomagnetism網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Random Fields of Piezoelectricity and Piezomagnetism被引頻次




書目名稱Random Fields of Piezoelectricity and Piezomagnetism被引頻次學(xué)科排名




書目名稱Random Fields of Piezoelectricity and Piezomagnetism年度引用




書目名稱Random Fields of Piezoelectricity and Piezomagnetism年度引用學(xué)科排名




書目名稱Random Fields of Piezoelectricity and Piezomagnetism讀者反饋




書目名稱Random Fields of Piezoelectricity and Piezomagnetism讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:10:21 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:06:57 | 只看該作者
Mathematical Preliminaries,We introduce piezoelectricity symmetry classes and define wide-sense homogeneous and isotropic random fields taking values in a linear space of piezoelectric tensors with a prescribed symmetry.
地板
發(fā)表于 2025-3-22 07:37:46 | 只看該作者
Anatoliy Malyarenko,Martin Ostoja-Starzewski,AmirhReviews displacement-based and stress-based theories of linear piezoelectric and piezomagnetic materials.Gives an account of the corresponding variational principles.Presents a random field formulatio
5#
發(fā)表于 2025-3-22 08:47:58 | 只看該作者
The Choice of a Basis in the Space , in terms of stochastic integrals with respect to certain random measures depend on the choice of a basis in the linear space where the field takes its values. We choose a basis for 11 different fields. It turns out that the basis depends only on the crystal system of the group ..
6#
發(fā)表于 2025-3-22 13:20:43 | 只看該作者
SpringerBriefs in Applied Sciences and Technologyhttp://image.papertrans.cn/r/image/821047.jpg
7#
發(fā)表于 2025-3-22 18:10:59 | 只看該作者
8#
發(fā)表于 2025-3-22 21:35:43 | 只看該作者
ork that gives a comprehensive and systematic treatment of gThis work presents the first comprehensive and systematic treatment of all relevant issues and topics in contemporary global bioethics. Now that bioethics has entered into a novel global phase, a wider set of issues, problems and principles
9#
發(fā)表于 2025-3-23 04:56:56 | 只看該作者
Anatoliy Malyarenko,Martin Ostoja-Starzewski,Amirhossein Amiri-Hezavehork that gives a comprehensive and systematic treatment of gThis work presents the first comprehensive and systematic treatment of all relevant issues and topics in contemporary global bioethics. Now that bioethics has entered into a novel global phase, a wider set of issues, problems and principles
10#
發(fā)表于 2025-3-23 06:42:07 | 只看該作者
Anatoliy Malyarenko,Martin Ostoja-Starzewski,Amirhossein Amiri-Hezavehork that gives a comprehensive and systematic treatment of gThis work presents the first comprehensive and systematic treatment of all relevant issues and topics in contemporary global bioethics. Now that bioethics has entered into a novel global phase, a wider set of issues, problems and principles
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 21:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乳源| 咸宁市| 泾阳县| 明星| 文水县| 共和县| 兰州市| 神农架林区| 务川| 龙陵县| 铜梁县| 沂水县| 南漳县| 井冈山市| 新民市| 涿州市| 德清县| 城固县| 永济市| 漳平市| 孝昌县| 吴川市| 德州市| 广昌县| 彭州市| 中山市| 罗甸县| 德令哈市| 赤壁市| 福鼎市| 黔南| 酒泉市| 昌都县| 广南县| 泰安市| 溧水县| 阳曲县| 绥德县| 如皋市| 腾冲县| 建德市|