找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Random Fields and Geometry; Robert J. Adler,Jonathan E. Taylor Book 2007 Springer-Verlag New York 2007 Area.Gaussian process.Volume.astrop

[復(fù)制鏈接]
樓主: estrange
41#
發(fā)表于 2025-3-28 18:00:35 | 只看該作者
Gaussian Inequalities comparison to the power and simplicity of the coresponding basic inequality of Gaussian processes. This inequality was discovered independently, and established with very different proofs, by Borell [30] and Tsirelson, Ibragimov, and Sudakov (TIS) [160]. For brevity, we shall call it the Borell–TIS
42#
發(fā)表于 2025-3-28 22:29:39 | 只看該作者
43#
發(fā)表于 2025-3-29 01:39:32 | 只看該作者
Excursion Probabilitiesto evaluate the . . where . is a random process over some parameter set . . As usual, we shall restrict ourselves to the case in which . is centered and Gaussian and . is compact for the canonical metric of (1.3.1).
44#
發(fā)表于 2025-3-29 06:23:24 | 只看該作者
45#
發(fā)表于 2025-3-29 08:28:11 | 只看該作者
Differential Geometrythe format of a “glossary of terms. ” Most will be familiar to those who have taken a couple courses in differential geometry, and hopefully informative enough to allow the uninitiated. to follow the calculations in later chapters. However, to go beyond merely following the arguments there and to re
46#
發(fā)表于 2025-3-29 12:05:50 | 只看該作者
47#
發(fā)表于 2025-3-29 16:22:55 | 只看該作者
Critical Point Theorynifolds of one kind or another, which will serve there as parameter spaces for our random fields, as well as appearing in the proofs. The second are the Lipschitz–Killing curvatures that we met briefly in Chapter 7 and shall look at far more closely, in the piecewise smooth scenario, in Chapter 10.
48#
發(fā)表于 2025-3-29 21:53:28 | 只看該作者
Volume of Tubes to begin to reap the benefits of our investment, while at the same time developing some themes a little further for later exploitation. This chapter focuses on the celebrated volume-of-tubes formula of Wey1 [73, 168], which expresses the Lebesgue volume of a tube of radius ρ around a set . embedded
49#
發(fā)表于 2025-3-30 02:36:22 | 只看該作者
50#
發(fā)表于 2025-3-30 06:15:05 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 10:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
望奎县| 太湖县| 和林格尔县| 岱山县| 泰顺县| 大丰市| 台中市| 高邑县| 邛崃市| 政和县| 张家界市| 焉耆| 万全县| 江源县| 永泰县| 长葛市| 兴化市| 崇明县| 丰镇市| 教育| 石泉县| 雅江县| 漳平市| 水富县| 灵川县| 安乡县| 蒙自县| 莱芜市| 广饶县| 西城区| 社旗县| 绵阳市| 红河县| 枣庄市| 镇宁| 泰顺县| 于都县| 鹤庆县| 渝北区| 台州市| 佛山市|