找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Random Effect and Latent Variable Model Selection; David B. Dunson Book 2008 Springer-Verlag New York 2008 Factor analysis.Generalized lin

[復制鏈接]
查看: 23884|回復: 37
樓主
發(fā)表于 2025-3-21 16:24:26 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Random Effect and Latent Variable Model Selection
編輯David B. Dunson
視頻videohttp://file.papertrans.cn/822/821039/821039.mp4
概述Practically motivated and clear overview of methods for selecting random effects..Leading researchers in the field describe how to appropriately test variance components equal to zero..Bayesian and fr
叢書名稱Lecture Notes in Statistics
圖書封面Titlebook: Random Effect and Latent Variable Model Selection;  David B. Dunson Book 2008 Springer-Verlag New York 2008 Factor analysis.Generalized lin
描述Random Effect and Latent Variable Model Selection In recent years, there has been a dramatic increase in the collection of multivariate and correlated data in a wide variety of ?elds. For example, it is now standard pr- tice to routinely collect many response variables on each individual in a study. The different variables may correspond to repeated measurements over time, to a battery of surrogates for one or more latent traits, or to multiple types of outcomes having an unknown dependence structure. Hierarchical models that incorporate subje- speci?c parameters are one of the most widely-used tools for analyzing multivariate and correlated data. Such subject-speci?c parameters are commonly referred to as random effects, latent variables or frailties. There are two modeling frameworks that have been particularly widely used as hierarchical generalizations of linear regression models. The ?rst is the linear mixed effects model (Laird and Ware , 1982) and the second is the structural equation model (Bollen , 1989). Linear mixed effects (LME) models extend linear regr- sion to incorporate two components, with the ?rst corresponding to ?xed effects describing the impact of predictors
出版日期Book 2008
關鍵詞Factor analysis; Generalized linear model; Latent variable model; Latent variables; Likelihood; Variance;
版次1
doihttps://doi.org/10.1007/978-0-387-76721-5
isbn_softcover978-0-387-76720-8
isbn_ebook978-0-387-76721-5Series ISSN 0930-0325 Series E-ISSN 2197-7186
issn_series 0930-0325
copyrightSpringer-Verlag New York 2008
The information of publication is updating

書目名稱Random Effect and Latent Variable Model Selection影響因子(影響力)




書目名稱Random Effect and Latent Variable Model Selection影響因子(影響力)學科排名




書目名稱Random Effect and Latent Variable Model Selection網絡公開度




書目名稱Random Effect and Latent Variable Model Selection網絡公開度學科排名




書目名稱Random Effect and Latent Variable Model Selection被引頻次




書目名稱Random Effect and Latent Variable Model Selection被引頻次學科排名




書目名稱Random Effect and Latent Variable Model Selection年度引用




書目名稱Random Effect and Latent Variable Model Selection年度引用學科排名




書目名稱Random Effect and Latent Variable Model Selection讀者反饋




書目名稱Random Effect and Latent Variable Model Selection讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:12:19 | 只看該作者
Likelihood Ratio Testing for Zero Variance Components in Linear Mixed Models
板凳
發(fā)表于 2025-3-22 01:41:46 | 只看該作者
地板
發(fā)表于 2025-3-22 07:06:49 | 只看該作者
5#
發(fā)表于 2025-3-22 10:53:49 | 只看該作者
Bayesian Variable Selection in Generalized Linear Mixed Models
6#
發(fā)表于 2025-3-22 14:53:12 | 只看該作者
7#
發(fā)表于 2025-3-22 20:20:45 | 只看該作者
Bayesian Model Comparison of Structural Equation Models
8#
發(fā)表于 2025-3-23 01:03:31 | 只看該作者
Bayesian Model Selection in Factor Analytic Models
9#
發(fā)表于 2025-3-23 02:42:35 | 只看該作者
0930-0325 uctural equation model (Bollen , 1989). Linear mixed effects (LME) models extend linear regr- sion to incorporate two components, with the ?rst corresponding to ?xed effects describing the impact of predictors 978-0-387-76720-8978-0-387-76721-5Series ISSN 0930-0325 Series E-ISSN 2197-7186
10#
發(fā)表于 2025-3-23 09:21:11 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-30 11:16
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
宜昌市| 得荣县| 呼伦贝尔市| 砀山县| 信丰县| 朝阳市| 平山县| 杭州市| 忻城县| 枣阳市| 陵水| 繁峙县| 南开区| 山阳县| 沐川县| 金溪县| 平遥县| 内江市| 宁阳县| 佛坪县| 大冶市| 八宿县| 浙江省| 简阳市| 婺源县| 汕头市| 垣曲县| 义乌市| 永城市| 绿春县| 永年县| 社旗县| 邹平县| 湘潭县| 桂东县| 昆山市| 澳门| 翼城县| 芜湖县| 鄂伦春自治旗| 威信县|